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C H A P T E R

5 Global and Local Metrics24

Edmund Bertschinger & Edwin F. Taylor *

The basic demand of the special theory of relativity25

(invariance of the laws under Lorentz-transformations) is too26

narrow, i.e., that an invariance of the laws must be postulated27

relative to nonlinear transformations for the co-ordinates in28

the four-dimensional continuum.29

This happened in 1908. Why were another seven years30

required for the construction of the general theory of relativity?31

The main reason lies in the fact that it is not so easy32

to free oneself from the idea that coordinates must33

have an immediate metrical meaning.34

—Albert Einstein [boldface added]35

5.1 EINSTEIN’S PERPLEXITY36

Why seven years between special relativity and general relativity?37

It took Albert Einstein seven years to solve the puzzle compressed into theEinstein’s
seven-year
puzzle

38

two-paragraph quotation above. The first paragraph complains that special39

relativity (with its restriction to flat spacetime coordinates) is too narrow.40

Einstein demands that a nonlinear coordinate system—that is, one that is41

arbitrarily stretched—should also be legal. Nonlinear means that it can be42

stretched by different amounts in different locations.43

In the second paragraph, Einstein explains his seven-year problem: He44

tried to apply to a stretched coordinate system the same rules used in special45

relativity. Einstein’s phrase immediate metrical meaning describes somethingStretch
coordinates
arbitrarily.

46

that can be measured directly—for example, the radar-measured distance47

between the top of the Eiffel Tower and the Paris Opera building. Einstein48

says that since we can use nonlinear stretched coordinates, these coordinate49

separations need not be something we can measure directly, for example with50

a ruler.51

*Draft of Second Edition of Exploring Black Holes: Introduction to General Relativity
Copyright c© 2017 Edmund Bertschinger, Edwin F. Taylor, & John Archibald Wheeler. All

rights reserved. This draft may be duplicated for personal and class use.
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FIGURE 1 Compare distances between two different pairs of points on a flat wooden
cutting board. First measure with a ruler the distance between the pair of points P and Q. Then
measure the distance between the pair of points R and S. Measured distance PQ is smaller
than the measured distance RS. We require no coordinate system whatsoever to verify this
inequality; we measure distances directly on a flat surface.

What is the relation between the coordinate separations between two52

points and the directly-measured distance between those two points? HowSolving Einstein’s
puzzle leads to
the global metric.

53

does this distinction affect predictions of special and general relativity?54

Answering these questions reveals the unmeasurable nature of global55

coordinate separations, but nevertheless the central role of the global metric in56

connecting different local inertial frames in which we carry out measurements.57

5.2 EINSTEIN’S PERPLEXITY ON A WOODEN CUTTING BOARD58

Move beyond high school geometry and trigonometry!59

We transfer Einstein’s puzzle from spacetime to space and—to simplifySimplify: From curved
spacetime to a flat
cutting board.

60

further—measure the distance between two points on the flat surface of a61

wooden cutting board (Figure 1).62

A pair of points, P and Q, lie near to one another on the surface. A second63

pair of points, R and S, are farther apart than points P and Q. How do we64

know that distance RS is greater than distance PQ? We measure the twoMeasure distance
directly, with
a ruler.

65

distances directly, with a ruler. To ensure accuracy, we borrow a ruler from the66

local branch of the National Institute of Standards and Technology. Sure67

enough, with our official centimeter-scale ruler we verify distance RS to be68

greater than distance PQ. We do not need any coordinate system whatsoever69

to measure distance PQ or distance RS or to compare these distances on a flat70

surface.71

Next, apply coordinates to the flat surface. Do not draw coordinate lines72

directly on the cutting board; instead spread a fishnet over it (Figure 2). WhenDifference in
Cartesian coordinates
verifies difference
in distances.

73

we first lay down the fishnet, its narrow strings look like Cartesian square74

coordinate lines. Adjacent strings are one centimeter apart. The x-coordinate75

separation between P and Q is 1 centimeter, and the x-coordinate separation76
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FIGURE 2 A fishnet with one-centimeter separations covers the wooden cutting board.
Expressed in these coordinates, the coordinate separation PQ is 1 centimeter, while the
coordinate separation RS is 4 centimeters. In this case a coordinate separation does have
“an immediate metrical meaning” in Einstein’s phrase. Interpretation: In this case we can derive
from coordinate separations the values of directly-measured distances.

between R and S is 4 centimeters, confirming the inequality in our direct77

distance measurements. In this case each difference (or separation) in78

Cartesian coordinates, PQ and RS, does have “an immediate metrical79

meaning;” in other words, it corresponds to the directly-measured distance.80

Moving ahead, suppose that instead of string, we make the fishnet out ofStretch fishnet by
variable amounts
in x-direction.

81

rubber bands. As we lay the rubber band fishnet loosely on the cutting board,82

we do something apparently screwy: As we tack down the fishnet, we stretch it83

along the x-direction by different amounts at different horizontal positions.84

Figure 3 shows the resulting “stretch” coordinates along the x-direction.85

Now check the x-coordinate difference between P and Q in Figure 3, a“Stretch” coordinate
separation not equal
to measured distance.

86

difference that we call ∆xPQ. Then ∆xPQ = 5− 2 = 3. Compare this with the87

x-coordinate separation between R and S: ∆xRS = 10− 9 = 1. Lo and behold,88

the coordinate separation ∆xPQ is greater than the coordinate separation89

∆xRS, even though our directly-measured distance PQ is less than the90

distance RS. This contradiction is the simplest example we can find of the91

great truth that Einstein grasped after seven years of struggle: coordinate92

separations need not be directly measurable.93

“No fair!” you shout. “You can’t just move coordinate lines aroundStretch coordinates
form a legal map.

94

arbitrarily like that.” Oh yes we can. Who is to prevent us? Any coordinate95

system constitutes a map. What is a map? Applied to our cutting board, a96

map is simply a rule for assigning numbers that uniquely specify the location97

of every individual point on the surface. Our coordinate system in Figure 398

does that job nicely; it is a legal and legitimate map. However, the amount of99

stretching—what we call the map scale—varies along the x-direction.100
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FIGURE 3 Global coordinate system that covers our entire cutting board, but in this case
made with a rubber fishnet tacked down so as to stretch the x separation of fishnet cords by
different amounts at different locations along the horizontal direction. The coordinate separation
∆xPQ = 3 between points P and Q is greater than the coordinate separation ∆xRS = 1
between points R and S, even though the measured distances between each of these pairs
show the reverse inequality. Einstein was right: In this case coordinate separations do not have
“an immediate metrical meaning;” in other words, coordinate separations do not tell us the
values of directly-measured distances.

Of course, for convenience we usually choose the map scale to be101

everywhere uniform, as displayed in Figure 2. This choice is perfectly legal. We102

call this legality of Cartesian coordinates Assertion 1:103

Assertion 1. ON A FLAT SURFACE IN SPACE, we CAN FIND a globalAssertion 1 for a
FLAT SURFACE:
CAN draw map with
everywhere-uniform
map scale.

104

coordinate system such that every coordinate separation IS a105

directly-measured distance.106

Standard Cartesian (x, y) coordinates allow us to use the power of the107

Pythagorean Theorem to predict the directly-measured distance s between two108

points anywhere on the board in Figure 2:109

∆s2 = ∆x2 + ∆y2 (flat surface: Choose Cartesian coordinates.) (1)

The coordinate separations ∆x and ∆y and the resulting measured distanceCartesian separations:
Pythagoras works!

110

∆s can be as small or as large as we want, as long as the map scale is uniform111

everywhere on the flat cutting board.112

In contrast, we cannot apply the Pythagorean Theorem using the113

“stretch” coordinates in Figure 3 to find the distance between a pair of points114

that are far apart in the x-direction. Why not? Because a large separation115

between two points can span regions where the map scale varies noticeably,116

that is, where rubber bands stretch by substantially different amounts. For117

example in Figure 3, the x-coordinate separation between points Q and S on118
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the flat surface is ∆xQS = 5, whereas points P and S have a much greaterStretch coordinates:
Pythagoras fails
on a flat surface.

119

x-coordinate separation: ∆xPS = 8. This is true even though the120

directly-measured distance between P and S is only slightly greater than the121

directly-measured distance between Q and S.122

Stretched-fishnet coordinates of Figure 3, provide a case in which the123

Pythagorean Theorem (1) gives incorrect answers—coordinate separations are124

not the same as directly-measured distances. This yields Assertion 2, an125

alternative to Assertion 1:126

Assertion 2. ON A FLAT SURFACE IN SPACE, we are FREE TO CHOOSE aAssertion 2 for a
FLAT SURFACE:
We are FREE to
choose variable
map scale over
the surface.

127

global coordinate system for which coordinate separations ARE NOT128

directly-measured distances.129

5.3 GLOBAL SPACE METRIC FOR A FLAT SURFACE130

Space metric to the rescue.131

Einstein tells us that we are free to stretch or contract conventional (in this132

case Cartesian) coordinates in any way we want. But if we do, then the133

resulting coordinate separations lose their “immediate metrical meaning;” thatHow can we predict
measured distances
using arbitrary
coordinates?
Answer: The metric!

134

is, a coordinate separation between a pair of points no longer predicts the135

distance we measure between these points. If the coordinate separation can no136

longer tell us the distance between two points, what can? Our simple question137

about space on a flat cutting board is a preview of the far more profound138

question about spacetime with which Einstein struggled: How can we predict139

the measured wristwatch time τ or the measured ruler distance σ between a140

pair of events using the differences in arbitrary global coordinates between141

them? The answer was a breakthrough: “The metric!” Here’s the path to that142

answer, starting with our little cutting board.143

Begin by recognizing that very close to any point on the flat surface the144

coordinate scale is nearly uniform, with a multiplying factor (local map scale)Space metric
gives differential ds
from differentials
dx and dy.

145

to correct for the local stretching in the x-coordinate. Strictly speaking, the146

coordinate scale is uniform only vanishingly close to a given point. Vanishingly147

close? That phrase instructs us to use the vanishingly small calculus limit:148

differential coordinate separations. For the coordinates of Figure 3, we find the149

differential distance ds from a global space metric of the form:150

ds2 = F (xstretch)dx2
stretch + dy2

stretch (variable x-stretch) (2)

To repeat, we use the word global to emphasize that x is a valid coordinate151

everywhere across our cutting board covered by the stretched fishnet. In (2),152

F (x)—actually the square root of F (x)—is the map scale that corrects for the153

stretch in the horizontal coordinate differentially close to that value of x. If154

F (x) is defined everywhere on the cutting board, however, then equation (2) is155

also valid at every point on the board.156
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The global space metric is a tremendous achievement. On the right side ofMetric works well
LOCALLY, even
with stretched
coordinates.

157

metric (2) the function F (x) corrects the squared differential dx2
stretch to give158

the correct squared differential distance ds2 on the left side.159

We have gained a solution to Einstein’s puzzle for the simplified case of160

differential separations on a flat surface in space. But we seem to have suffered161

a great loss as well: calculus insists that the differential distance ds predicted162

by the space metric is vanishingly small. We cannot use our officialDifferential distance
ds is too small
to measure. . .

163

centimeter-scale ruler to measure a vanishingly small differential distance. How164

can we possibly predict a measured distance—for example the distance165

between points P and S on our flat cutting board? We want to predict and166

then make real measurements on real flat surfaces!167

Differential calculus curses us with its stingy differential separations ds,168

but integral calculus rescues us. We can sum (“integrate”) differential. . . but we can predict
measured distance
from summed
(integrated) ds.

169

distances ds along the curve. The result is a predicted total distance along the170

curved path, a prediction that we can verify with a tape measure. As a special171

case, let’s predict the distance s along the straight horizontal x-axis from point172

P to point S in Figure 3. Call this distance sPS. “Horizontal” means no173

vertical, so that dy = 0 in equation (2). The distance sPS is then the sum174

(integral) of ds = [F (x)]
1/2

dx from x = 2 to x = 10, where the scale function175

[F (x)]
1/2

varies with the value of x:176

sPS =

x=10∫
x=2

[F (xstretch)]
1/2

dxstretch (horizontal distance: P to S) (3)

When we evaluate this integral, we can once again use our official177

centimeter-scale ruler to verify by direct measurement that the total distance178

sPS between points P and S predicted by (3) is correct.179

The example of metric (2) leads to our third important assertion:180

Assertion 3. ON A FLAT SURFACE IN SPACE when using a globalAssertion 3 for a
FLAT SURFACE:
Metric gives us ds,
whose integral predicts
measured distance s.

181

coordinate system for which coordinate separations ARE NOT182

directly-measured distances, a space metric is REQUIRED to give the183

differential distance ds whose integrated value predicts the measured184

distance s between points.185

5.4 GLOBAL SPACE METRIC FOR A CURVED SURFACE186

Squash a spherical map of Earth’s surface onto a flat table? Good luck!187

In Sections 5.2 and 5.3, we chose variably-stretched coordinates on a flat188

surface. Then we corrected the effects of the variable stretching using a metric.189

This is a cute mathematical trick, but who cares? We are not forced to use190

stretched coordinates on a flat cutting board, so why bother with them at all?191

To answer these questions, apply our ideas about maps to the curved surface192

of Earth. Chapter 2 derived a global metric—equation (3), Section 2.3—for193

the spherical surface of Earth using angular coordinates λ for latitude and φ194
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for longitude, along with Earth’s radius R. Here we convert that global metric195

to coordinates x and y:196

ds2 = R2 cos2 λ dφ2 +R2dλ2 (0 ≤ φ < 2π and − π/2 ≤ λ ≤ π/2) (4)

= cos2

(
Rλ

R

)
(Rdφ)2 + (Rdλ)2 (metric : Earth′s surface)

= cos2
( y
R

)
dx2 + dy2 (0 ≤ x < 2πR and − πR/2 ≤ y ≤ πR/2)

On a sphere, we define y ≡ Rλ and x ≡ Rφ (the latter from the definition of197

radian measure).198

Compare the third line of (4) with equation (2). The y-dependent199

coefficient of dx2 results from the fact that as you move north or south fromUndistorted flat
maps of Earth
impossible.

200

the equator, lines of longitude converge toward a single point at each pole.201

That coefficient of dx2 makes it impossible to cover Earth’s spherical surface202

with a flat Cartesian map without stretching or compressing the map at some203

locations.204

Throughout history, mapmakers have struggled to create a variety of flat205

projections of Earth’s spherical surface for one purpose or another. But each206

projection has some distortion. No uniform projection of Earth’s surface can207

be laid on a flat surface without stretching or compression in some locations. If208

this is impossible for a spherical Earth with its single radius of curvature, it is209

certainly impossible for a general curved surface—such as a potato—withA curved surface
forces us to use
stretched coordinates.

210

different radii of curvature in different locations. In brief, it is impossible to211

completely cover a curved surface with a single Cartesian coordinate system.212

(Is a cylindrical surface curved? No; technically it is a flat surface, like a213

rolled-up newspaper, which Cartesian coordinates can map exactly.) We214

bypass formal proof and state the conclusion:215

Assertion 4. ON A CURVED SURFACE IN SPACE, it is IMPOSSIBLE to find aAssertion 4 for a
CURVED SURFACE:
Everywhere-uniform
map scale is
IMPOSSIBLE.

216

global coordinate system for which coordinate separations EVERYWHERE217

on the surface are directly-measured distances.218

The dy on the third line of equation (4) is still a directly-measured219

distance: the differential distance northward from the equator. That is true for220

a sphere, whose constant R-value allows us to define y ≡ Rλ. But Earth is not221

a perfect sphere; rotation on its axis results in a slightly-bulging equator.222

Technically the Earth is an oblate spheroid, like a squashed balloon. In that223

case neither x or y coordinate separations are directly-measured distances.224

And most curved surfaces are more complex than the squashed balloon.225

Einstein was right: In most cases coordinate separations cannot be226

directly-measurable distances.227

No possible uniform map scale over the entire surface of Earth? ThenMetric required
on curved surface.

228

there is an inevitable distinction between a coordinate separation and229

measured distance. The space metric is no longer just an option, but has230

become the indispensable practical tool for predicting distances between two231

points from their coordinate separations.232
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Assertion 5. ON A CURVED SURFACE IN SPACE, a global space metric isAssertion 5 for a
CURVED SURFACE:
Metric REQUIRED
to calculate distance.

233

REQUIRED to calculate the differential distance ds between a pair of234

adjacent points from their differential coordinate separations.235

As before, integrating the differential ds yields a measured total distance s236

along a path on the curved surface, whose predicted length we can verify237

directly with a tape measure.238

SPACE SUMMARY: On a flat surface in space we can choose239

Cartesian coordinates, so that the Pythagorean theorem—with no240

differentials—correctly predicts the distance s between two points241

far from one another. On a curved surface we cannot. But on any242

curved surface we can use a space metric to calculate ds between aSpace
summary

243

pair of adjacent points from values of the differential coordinate244

separations between them. Then we can integrate these differentials245

ds along a given path in space to predict the directly-measured246

length s along that path.247

The combination of global coordinates plus the global metric is even more248

powerful than our summary implies. Taken together, the two describe a curved249

surface completely. In principle we can use the global coordinates plus the250

metric to reconstruct the curved surface exactly. (Strictly speaking, the global“Connectedness”
= topology.

251

coordinate system must include information about ranges of its coordinates,252

ranges that describe its “connectedness”—technical name: its topology.)253

5.5 GLOBAL SPACETIME METRIC254

Visit a neutron star with wristwatch, tape measure—and metric—in your back pocket.255

256

What does all this curved-surface-in-space talk have to do with Einstein’s257

perplexity during his journey from special relativity to general relativity? As258

usual, we express the answer as an analogy between a curved surface in space259

and a curved region of spacetime. Spacetime around a black hole multiplies theTo distorted space
add warped t.
Result? Trouble
for Einstein!

260

complications of the curved surface: not only is space distorted compared with261

its Euclidean description but the fourth dimension, the t-coordinate, is warped262

as well. All this complicates our new task, which is to predict our measurement263

of ruler distance σ or wristwatch time τ between a pair of events in spacetime.264

Here we simply state, for flat and curved regions of spacetime, five265

assertions similar to those stated earlier for flat and curved surfaces in space.266

Assertion A. IN A FLAT REGION OF SPACETIME, we CAN FIND a globalAssertion A for
FLAT SPACETIME:
Everywhere-uniform
map scale possible.

267

coordinate system in which every coordinate separation IS a268

directly-measured quantity.269

In Chapter 1 we introduced a pair of expressions for flat spacetime called the270

interval, similar to the Pythagorean Theorem for a flat surface. One form of271

the interval predicts the wristwatch time τ between two events with a timelike272
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relation. The second form tells us the ruler distance σ between two events with273

a spacelike relation:274

∆τ2 = ∆t2lab −∆s2
lab (flat spacetime, timelike-related events) (5)

∆σ2 = ∆s2
lab −∆t2lab (flat spacetime, spacelike-related events)

In flat spacetime, each space coordinate separation ∆slab and time coordinate275

separation ∆tlab measured in the laboratory frame can be as small or as great276

as we want. On to our second assertion:277

Assertion B. IN A FLAT REGION OF SPACETIME we are FREE TO CHOOSEAssertion B for
FLAT SPACETIME:
We are free to choose
a variable map scale
over the region.

278

a global coordinate system in which coordinate separations279

ARE NOT directly-measured quantities.280

In this case we can choose not only stretched space coordinates but also a281

system of scattered clocks that run at different rates. If we choose such a282

“stretched” (but perfectly legal) global spacetime coordinate system, the283

interval equations (5) are no longer valid, because any of these coordinate284

separations may span regions of varying spacetime map scales. So we again285

retreat to a differential version of this equation, adding coefficients similar to286

that of space metric (2). A simple timelike metric might have the general form:287

dτ2 = J(t, y, x)dt2 −K(t, y, x)dy2 − L(t, y, x)dx2 (6)

Here each of the coefficient functions J , K, and L may vary with x, y, and t.Spacetime metric
delivers dτ from
differentials dt,
dy, and dx.

288

(The coefficient functions are not entirely arbitrary: the condition of flatness289

imposes differential relations between them, which we do not state here.)290

Given such a metric for flat spacetime, we are free to use this metric to291

convert differentials of global coordinates (right side of the metric) to292

measured quantities (left side of the metric). This leads to our third assertion:293

Assertion C. IN A FLAT REGION OF SPACETIME, when we choose a globalAssertion C for
FLAT SPACETIME:
Variable map scale
requires metric
to calculate
dτ or dσ.

294

coordinate system in which coordinate separations are not295

directly-measured quantities, then a global spacetime metric is REQUIRED296

to calculate the differential interval, dτ or dσ, between two adjacent events297

using their differential global coordinate separations.298

On the other hand, in a region of curved spacetime—analogous to the299

situation on a curved surface in space—we cannot set up a global coordinate300

system with the same map scale everywhere in the region.Assertion D for
CURVED
SPACETIME:
Everywhere-uniform
map scale is
IMPOSSIBLE.

301

Assertion D. IN A CURVED REGION OF SPACETIME it is IMPOSSIBLE to302

find a global coordinate system in which coordinate separations303

EVERYWHERE in the region are directly-measured quantities.304

Assertion E. IN A CURVED REGION OF SPACETIME, a global spacetime305

metric is REQUIRED to calculate the differential interval, dτ or dσ, betweenAssertion E for
CURVED
SPACETIME:
Metric REQUIRED
to calculate
dτ or dσ.

306

a pair of adjacent events from their differential global coordinate307

separations.308
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SPACETIME SUMMARY: In flat spacetime we can choose309

coordinates such that the spacetime interval—with no310

differentials—correctly predicts the wristwatch time (or the ruler311

distance) between two events far from one another. In curved312

spacetime we cannot. But in curved spacetime we can use aSpacetime
summary

313

spacetime metric to calculate dτ or dσ between adjacent events314

from the values of the differential coordinate separations between315

them. Then we can integrate dτ along the worldline of a particle,316

for example, to predict the directly-measured time lapse τ on a317

wristwatch that moves along that worldline.318

As in the case of the curved surface, a complete description of a spacetime319

region results from the combination of global spacetime coordinates and global320

metric—along with the connectedness (topology) of that region. For example,“Connectedness”
= topology.

321

we can in principle use Schwarzschild’s global coordinates and his metric to322

answer all questions about spacetime around the black hole.323

5.6 ARE WE SMARTER THAN EINSTEIN?324

Did Einstein fumble his seven-year puzzle?325

We have now solved the puzzle that troubled Einstein for the seven years it326

took him to move from special relativity to general relativity. Surely Einstein327

would understand in a few seconds the central idea behind cutting-board328

examples in Figures 1 through 3. However, the extension of this idea to the329

four dimensions of spacetime was not obvious while he was struggling to createEinstein’s struggle 330

a brand new theory of spacetime that is curved, for example, by the presence331

of Earth, Sun, neutron star, or black hole. Is it any wonder that during this332

intense creative process Einstein took a while to appreciate the lack of333

“immediate metrical meaning” of differences in global coordinates?334

It is embarrassing to admit that one co-author of this book (EFT)One co-author
didn’t get it.

335

required more than two years to wake up to the basic idea behind the present336

chapter, even though this central result is well known to every practitioner of337

general relativity. Even now EFT continues to make Einstein’s original338

mistake: He confuses global coordinate separations with measured quantities.339

You too will probably find it difficult to avoid Einstein’s mistake.340

FIRST STRONG ADVICE FOR THIS ENTIRE BOOK341

To be safe, it is best to assume that global coordinateFIRST ADVICE
FOR THE ENTIRE
BOOK

342

separations do not have any measured meaning. Use global343

coordinates only with the metric in hand to convert a344

mapmaker’s fantasy into a surveyor’s reality.345

Global coordinate systems come and go; wristwatch ticks and ruler lengths are346

forever!347
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FIGURE 4 On a flat patch we build an inertial Cartesian latticework of meter sticks
with synchronized clocks. This is an instrumented room (defined in Section 3.10), on
which we impose a local coordinate system—a frame—limited in both space and time.
Limited by what? Limited by the sensitivity to curvature of the measurement we want
to carry out in that local inertial frame.

5.7 LOCAL MEASUREMENT IN A ROOM USING A LOCAL FRAME348

Where we make real measurements349

Of all theories ever conceived by physicists, general relativity350

has the simplest, most elegant geometric foundation. Three351

axioms: (1) there is a global metric; (2) the global metric is352

governed by the Einstein field equations; (3) all special353

relativistic laws of physics are valid in every local inertial354

frame, with its (local) flat-spacetime metric.355

—Misner, Thorne, and Wheeler (edited)356

No phenomenon is a physical phenomenon until it is an357

observed phenomenon.358

—John Archibald Wheeler359



April 2, 2020 07:25 GlobalLocalMetrics200330v1 Sheet number 13 Page number 5-12 AW Physics Macros

5-12 Chapter 5 Global and Local Metrics

Special relativity assumes that a measurement can take place throughout an360

unlimited space and during an unlimited time. Spacetime curvature denies us361

this scope, but general relativity takes advantage of the fact that almost362

everywhere on a curved surface, space is locally flat; remember “flat Kansas”Spacetime is
locally flat
almost everywhere.

363

in Figure 3, Section 2.2. Wherever spacetime is smooth—namely close to every364

event except one on a singularity—general relativity permits us to approximate365

the gently curving stage of spacetime with a local inertial frame. This section366

sets up the command that we shout loudly everywhere in this book:367

SECOND STRONG ADVICE FOR THIS ENTIRE BOOK368SECOND ADVICE
FOR THE ENTIRE
BOOK

In this book we choose to make every measurement in a local369

inertial frame, where special relativity rules.370

We ride in a room, a physical enclosure of fixed spatial dimensions (defined in371

Section 3.10) in which we make our measurements, each measurement limited372

in local time. We assume that the room is sufficiently small—and the duration373

of our measurement sufficiently short—that these measurements can be374

analyzed using special relativity. This assumption is correct on a patch.375

DEFINITION 1. Patch376

A patch is a spacetime region purposely limited in size and duration soDefinition:
patch

377

that curvature (tidal acceleration) does not noticeably affect a given378

measurement.379

Important: The definition of patch depends on the scope of the measurement380

we wish to make. Different measurements require patches of different extent in381

global coordinates. On this patch we lay out a local coordinate system, called382

a frame.383

DEFINITION 2. Frame384

A frame is a local coordinate system of our choice installed onto a385

spacetime patch.This local coordinate system is limited to that singleDefinition:
frame

386

patch.387

Among all possible local frames, we choose one that is inertial:388

DEFINITION 3. Inertial frame389

An inertial or free-fall frame is a local coordinate system—typicallyDefinition:
inertial frame

390

Cartesian spatial coordinates and readings on synchronized clocks391

(Figure 4)—for which special relativity is valid. In this book we report392

every measurement using a local inertial frame.393

In general relativity every inertial frame is local, that is limited in spacetime394

extent. Spacetime curvature precludes a global inertial frame.395

Who makes all these measurements? The observer does:396

DEFINITION 4. Observer = Inertial Observer397

An observer is a person or machine that moves through spacetimeDefinition:
observer

398

making measurements, each measurement limited to a local inertial399

frame. Thus an observer moves through a series of local inertial frames.400
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Box 1. What moves?
A story—impossible to verify—recounts that at his trial by the
Inquisition, after recanting his teaching that the Earth moves
around the Sun, Galileo muttered under his breath, “Eppur si
muove,” which means “And yet it moves.”

According to special and general relativity, what moves? We
quickly eliminate coordinates, events, patches, frames, and
spacetime itself:

• Coordinates do not move. Coordinates are number-
labels that locate an event; it makes no sense to say
that a coordinate number-label moves.

• An event does not move. An event is completely
specified by coordinates; it makes no sense to say
that an event moves.

• A flat patch does not move. A flat patch is a region
of spacetime completely specified by a small, specific
range of map coordinates; it makes no sense to say
that a range of map coordinates moves.

• A local frame does not move. A frame is just a set of
local coordinates—numbers—on a patch; it makes no
sense to say that a set of local coordinates move.

• Spacetime does not move. Spacetime labels the
arena in which events occur; it makes no sense to
say that a label moves.

You cannot drop a frame. You cannot release a frame. You
cannot accelerate a frame. It makes no sense to say that you

can even move a frame. You cannot carry a frame around, any
more than you can move a postal zip code region by carrying
its number around.

What does move? Stones and light flashes move; observers
and rooms move. Whatever moves follows a worldline or
worldtube through spacetime.

• A stone moves. Even a stone at rest in a shell
frame moves on a worldline that changes global t-
coordinate.

• A light flash moves; it follows a null worldline along
which both r and φ can change, but ∆τ = 0.

• An observer moves. Basically the observer is an
instrumented stone that makes measurements as it
passes through local frames.

• A room moves. Basically a room is a large, hollow
stone.

Why do almost all teachers and special relativity texts—
including our own physics text Spacetime Physics and
Chapter 1 of this book!—talk about “laboratory frame” and
“rocket frame”? Because it is a tradition; it leads to no major
confusion in special relativity. But when we specify a local rain
frame in curved spacetime using (for example) a small range
of Schwarzschild global coordinates t, r, and φ, then it makes
no sense to say that this local rain frame—this range of global
coordinates—moves. Stones move; coordinates do not.

The observer, riding in a room (Definition 3, Section 3.10), makes a sequence401

of measurements as she passes through a series of local inertial frames. As it402

passes through spacetime, the room drills out a worldtube (Definition 4,403

Section 3.10). Figure 5 shows such a worldtube.404

Objection 1. In Definition 4 you say that the observer moves through a405

series of local inertial frames. But doesn’t a shell observer stay in one local406

frame?407

No! The shell observer is not stationary in the global t-coordinate, but408

moves along a worldline (Figure 5). By definition, a local inertial frame409

spans a given lapse of frame time ∆tshell, as well as a given frame volume410

of space. In Figure 5 the first measurement takes place in Frame #1. When411

the first measurement is over, global t/M has elapsed and the observer412

leaves Frame #1. A second measurement takes place in Frame #2. The413

range of r/M and φ global coordinates of Frame #2 may be the same as414

in Frame #1. The shell observer makes a series of measurements, each415

measurement in a different local inertial frame.416
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Shell 
worldtube 

Shell observer
worldline 

Shell frame #2

Shell frame #3

Shell frame #1

t/M

r/M

φ

FIGURE 5 A shell worldtube (Section 3.10) that embraces three sample shell frames
outside the event horizon. The shell observer carries out an experiment while passing through
Frame #1 in the figure. He may then repeat the same experiment or carry out another one in
Frames #2 and #3 at greater t coordinates. For simplicity each shell frame is shown as a cube.
Each frame is nailed to a particular event at map coordinates (t̄/M, r̄/M, φ̄).

Comment 1. Euclid’s curved space vs. Einstein’s curved spacetime417

Figure 5 shows a case in which a shell observer stands at constant r and φ418

coordinates while he passes, with changing map t-coordinate, through a series419

of local frames, each frame defined over a range of r, φ, and t-coordinates.420

Figure 5 in Section 2.2 showed the Euclidean space analogy in which a traveler421

passes across a series of local flat maps on her way along the curved surface of422

Earth from Amsterdam to Vladivostok. Each of these flat maps is essentially a423

set of numbers: local space coordinates we set up for our own use. Similarly,424

each local frame of Figure 5 is just a set of numbers, local space and time425

coordinates we set up for our own use. A frame is not a room; a frame does not426

fall; a frame does not move; it is just a set of numbers—coordinates—that we427

use to report results of local measurements (Box 1). Figure 5 shows multiple428

shell frames, two of them adjacent in t-coordinate. Shell frames can also overlap,429

analogous to the overlap of adjacent local Euclidean maps in Figure 5, Section430

2.2.431

Objection 2. Whoa! Can a frame exist inside the event horizon?432

Definitely. A frame is a set of coordinates—numbers! Numbers are not433

things; they can exist anywhere, even inside the event horizon. In contrast,434

the diver in her unpowered spaceship is a “thing.” Even inside the event435



April 2, 2020 07:25 GlobalLocalMetrics200330v1 Sheet number 16 Page number 5-15 AW Physics Macros

Section 5.7 Local Measurement in a Room Using a Local Frame 5-15

horizon the she-thing continues to pass through a series of local frames.436

Inside the event horizon, however, she is doomed to continue to the437

singularity as her wristwatch ticks inevitably forward.438

By definition, we use the flat-spacetime metric to analyze events in a local439

inertial frame. We write this metric for a local shell frame in a rather strange440

form which we then explain:441

∆τ2 ≈ ∆t2shell −∆y2
shell −∆x2

shell (7)

Choose the increment ∆yshell to be vertical (radially outward), and the ∆xshellLocal flat spacetime
→ local inertial metric.

442

increment to be horizontal (tangential along the shell).443

Instead of an equal sign, equation (7) has an approximately equal sign.444

This is because near a black hole or elsewhere in our Universe there is always445

some spacetime curvature, so the equation cannot be exact. The upper case446

Delta, ∆, also has a different meaning in (7) than in special relativity. In447

special relativity (Section 1.10) we used ∆ to emphasize that in flat spacetime448

the two events whose separation is described by (7) can be very far apart in449

space or time and their coordinate separations still satisfy (7) with an equals450

sign. In equation (7), however, both events must lie in the local frame within451

which the coordinate separations ∆tshell, ∆yshell, and ∆xshell are defined.452

How do we connect local metric (7) to the Schwarzschild global metric? WeConnect global
and local metrics

453

do this by considering a local frame over which global coordinates t, r, and φ454

vary only a little. Small variation allows us to replace r with its average value455

r̄ over the patch and write the Schwarzschild metric in the approximate form:456

∆τ2 ≈
(

1− 2M

r̄

)
∆t2 − ∆r2(

1− 2M

r̄

) − r̄2∆φ2 (spacetime patch) (8)

Equation (8) is no longer global. The value of r̄ depends on where this patch is457

located, leading to a local wristwatch time lapse ∆τ for a given change ∆r.458

The value of r̄ also affects how much ∆τ changes for a given change in ∆t or459

∆φ. Equation (8) is approximately correct only for limited ranges of ∆t, ∆r,460

and ∆φ. In contrast to the differential global Schwarzschild metric, (8) has461

become a local metric. That is the bad news; now for some good news.462

Coefficients in (8) are now constants. So simply equate correspondingLocal shell
coordinates

463

terms in the equations (8) and (7):464

∆tshell ≡
(

1− 2M

r̄

)1/2

∆t (9)

∆yshell ≡
(

1− 2M

r̄

)−1/2

∆r (10)

∆xshell ≡ r̄∆φ (11)

465
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FIGURE 6 Flat triangular segments on the surface of a Buckminster Fuller geodesic dome.
A single flat segment is the geometric analog of a locally flat patch in curved spacetime around
a black hole; we add local coordinates to this patch to create a local frame. (Figure 3 in Section
3.3 shows a complete geodesic dome with six-sided segments.)

Substitutions (9), (10), and (11) turn approximate metric (8) into466

approximate metric (7), which is—approximately!—the metric for flat467

spacetime. Payoff: We can use special relativity to analyze local measurements468

and observations in a shell frame near a black hole.469

Objection 3. What is the meaning of equations (9) through (11)? What do470

they accomplish? How do I use them?471

These equations are fundamental to our application of general relativity to472

Nature. On the left are measured quantities: ∆tshell is the measured shell473

time between two events, ∆yshell and ∆xshell are their measured474

separations in local space shell coordinates. These equations, plus the475

local metric (7) unleash special relativity to analyze local measurements in476

curved spacetime. In this book we choose to report every measurement477

using a local inertial frame.478

Comment 2. Left-handed (∆yshell,∆xshell) local space coordinates479

We find it convenient to have the local ∆yshell point along the outward global480

Schwarzschild r-coordinate and the local ∆xshell point along the direction of481

increasing angle ∆φ, on the [r, φ] slice through the center of the black hole. This482

earns the label left-handed for the space part of these local coordinates, which483

differs from most physics usage.484

Figure 6 shows a geometric analogy to a local flat patch: the local flat485

plane segments on the curved exterior surface of a Buckminster Fuller geodesic486

dome.487
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We summarize here the new notation introduced in equation (7) andSummary:
local notation

488

equations (9) through (11):489

≈ equality is not exact, due to residual curvature (12)

and coordinate conversion (Section 5.8)

∆ coordinate separation of two events within the local frame (13)

r̄ average r-coordinate across the patch (14)

490

Objection 4. How large—in ∆tshell, ∆yshell, and ∆xshell—am I allowed491

to make my local inertial frame? If you cannot tell me that, you have no492

business talking about local inertial frames at all!493

You are right, but the answer depends on the measurement you want to494

make. Some measurements are more sensitive than others to tidal495

accelerations; each measurement sets its own limit on the maximum extent496

of the local frame in order that it remain inertial for that measurement. If497

the local frame is too extended in both the ∆xshell and ∆yshell directions498

to be inertial, then it may be necessary to restrict the frame time ∆tshell499

during which it is carried out. Result: Different measurements prevent us500

from setting a universal, one-fits-all size for a local inertial frame. Sorry.501

Objection 5. What happens when we choose the size of the local frame502

too great, so the frame is no longer inertial? How do we know when we503

exceed this limit?504

505

There are two answers to these questions. The first is spacetime506

curvature: Section 1.11 entitled Limits on Local Inertial Frames describes507

this situation using Newtonian intuition. If two stones initially at rest near508

Earth are separated radially, the stone nearer the center accelerates509

downward at a faster rate. If two stones, initially at rest, are separated510

tangentially, their accelerations do not point in the same directions, Figure511

8, Section 1.11. These effects go under the name tidal accelerations,512

because ocean tides on Earth result from differences in gravitational513

attraction of Moon and Sun at different locations on Earth. If these tidal514

accelerations exceed the achievable accuracy of an experiment, then the515

local frame cannot be considered inertial.516

The second answer to the question results from the global coordinate517

system itself and the process by which the local inertial frame is derived518

from it. This part is treated in Section 5.8.519
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Box 2. Who cares about local inertial frames?
Sections 5.1 through 5.6 make no reference to local inertial
frames. Nor are they necessary. The left side of the
global metric predicts differentials dτ or dσ (or dτ =

dσ = 0) between adjacent events. Of course we cannot
measure differentials directly, because they are, by definition,
vanishingly small. We need to integrate them; for example
we integrate wristwatch time along the worldline of a stone.
The resulting predictions are sufficient to analyze results of

any experiment or observation. No local inertial frames are
required, and most general relativity texts do not use them.

Our approach in this book is different; we choose to predict,
carry out, and report all measurements with respect to a local
inertial frame. Payoff: In each local inertial frame we can
unleash all the concepts and tools of special relativity, such
as directly-measured space and time coordinate separations,
measurable energy and momentum of a stone; Lorentz
transformations between local inertial frames.

We may report local-frame measurements in the calculus limit, as we often520

do on Earth. For example, we record the motion of a light flash in our local521

inertial frame. Rewrite (7) as522

∆τ2 ≈ ∆t2shell −∆s2
shell (15)

where ∆sshell is the distance between two events measured in the shell frame.523

Now let a light flash travel directly between the two events in our local frame.524

For light ∆τ = 0 and we write its speed (a positive quantity) as:525 ∣∣∣∣∆sshell

∆tshell

∣∣∣∣ ≈ 1 (speed of light flash) (16)

We may want to know the instantaneous speed, which requires the calculusCan take calculus
limit in local frame.

526

limit. In this process all increments shrink to differentials and r̄ → r. For the527

light flash the result is:528

vshell ≡ lim
∆tshell→0

∣∣∣∣∆sshell

∆tshell

∣∣∣∣ = 1 (instantaneous light flash speed) (17)

Equation (17) reassures us that the speed of light is exactly one when529

measured in a local shell frame at any r (outside the event horizon, where530

shells can be constructed). The measured speed of a stone is always less than531

unity:532

vshell ≡ lim
∆tshell→0

∣∣∣∣∆sshell

∆tshell

∣∣∣∣ < 1 (instantaneous stone speed) (18)

5.8 THE TROUBLE WITH COORDINATES533

Coordinates, as well as spacetime curvature, limit accuracy.534

We need global coordinates and cannot apply general relativity without them.535

Only global coordinates can connect widely separated local inertial frames inCan use global
metric exclusively.

536
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FIGURE 7 Inaccuracies due to polar coordinates on a flat sheet of paper. Coordinates in
the middle frame are curved.

which we make measurements. Indeed, we can choose to use only global537

coordinates to apply general relativity (Box 2). Instead, in this book we choose538

to design and carry out measurements in a local inertial frame in order to539

unleash the power and simplicity of special relativity. In this process we fix540

average values of global coordinates to make constant the coefficients in theWe choose
to use local
coordinates.

541

global metric. This allows us to write down the relation between global and542

local coordinates, equations (9) through (11), in order to generate a local flat543

spacetime metric (7).544

But our choice has a cost that has nothing to do with spacetime545

curvature, illustrated by analogy to a flat geometric surface in Figure 7. The546

left frame shows polar coordinates laid out on the entire flat sheet. Choose aApproximation
due to coordinate
conversion

547

small area of the sheet (expanded in the second frame). That small area is, a548

patch (Definition 1) with a small section of global coordinates superimposed.549

This is a frame (Definition 2) whose local coordinate system is derived from550

global coordinates. The third frame shows Cartesian coordinates that cover551

the same patch, converting it to a local Cartesian frame, analogous to an552

inertial frame (Definition 3). What is the relation between the second frame553

and the third frame?554

The exact differential separation between adjacent points is555

ds2 = dr2 + r2dφ2 (19)

In order to provide some “elbow room” to carry out local measurements on556

our small patch, we expand from differentials to small increments with the557

approximations:558

∆s2 ≈ ∆r2 + r̄2∆φ2 (20)

≈ ∆x2 + ∆y2

Because of the average r̄ due to curved coordinates, equation (20) is not exact.Approximate due to
(1) residual curvature
plus (2) coordinate
conversion.

559

The approximation of this result has nothing to do with curvature, since the560

surface in the left panel is flat. A similar inexactness haunts the relation561
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FIGURE 8 Left panel. Example of global coordinates that satisfy the uniqueness
requirement: every event shown (filled circles) has a unique value of x and t. Right panel:
Example of a global coordinate system that fails to satisfy the uniqueness requirement; Event
A has two x-coordinates: x = 1 and x = 2; Event B has two t-coordinates: t = 2 and t = 3.

between global and local coordinates in equations (9) through (11). These562

equations are approximate for two reasons: (1) the residual curvature of563

spacetime across the local frame and (2) the conversion between global and564

local coordinates. In this book we emphasize the first of these, but the second565

is ever-present.566

5.9 REQUIREMENTS OF GLOBAL COORDINATE SYSTEMS567

Which coordinate systems can we use in a global metric?568

Thus far we have put no restrictions on global coordinate systems for globalSome restrictions
on global coordinates

569

metrics in general relativity. The basic requirements are a global coordinate570

system that (a) uniquely specifies the spacetime location of every event, and571

(b) when submitted to Einstein’s equations results in a global metric. Here are572

three technical requirements, quoted from advanced theory without proof.573

FIRST REQUIREMENT: UNIQUENESS574

The global coordinate system must provide a unique set of coordinates for eachUnique set of
coordinates
for each event

575

separate event in the spacetime region under consideration.576

The uniqueness requirement seems reasonable. A set of global coordinates, for577

example t, r, φ, must allow us to distinguish any given event from every other578

event. That is, no two distinct events can have every global coordinate the579

same; nor can any given event be labelled by more than one set of coordinates.580

The left panel in Figure 8 shows an example of global coordinates that satisfy581

the uniqueness requirement; the right panel shows an example of global582

coordinates that fail this requirement.583
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t

Box 3. Find a particular local inertial frame.
How can we locate and label a particular local inertial frame
on a shell around a black hole?

Ask a simpler question: How do we label and find one
particular flat triangular surface on a Buckminster Fuller
geodesic dome (Figure 6)? One way is simply to number
each flat surface: triangle #523 next to triangle #524 next to
triangle #525. Carry out this procedure for every flat triangle
on the geodesic dome. The result is a huge catalog that we
must consult to locate a given local flat segment on these
nested Buckminster Fuller geodesic domes.

We could use a similar sequential numbering scheme to label
and find a local inertial shell frame around a black hole,

sequential in both space and time. But we already have a
simpler way to index a single local inertial frame:

Equations (9) through (11) provide a much simpler indexing
scheme: the average values t̄, r̄, and φ̄. Average r̄ gives us
the shell, average φ̄ locates the position of the local frame
along the shell, and average t̄ tells us the global t-coordinate
of the frame at that location—local in time as well as space.
Three numbers, for example t̄, r̄, and φ̄, specify precisely
the local inertial shell frame in spacetime surrounding a black
hole.

In addition to the uniqueness requirement, we must be able to set up a584

local inertial frame everywhere around the black hole (except on its singularity.585

To allow this possibility, we add the second, smoothness requirement:586

SECOND REQUIREMENT: SMOOTHNESS587

The coordinates must vary smoothly from event to neighboring event. In practice,Smooth
coordinates

588

this means there must be a differentiable coordinate transformation that takes589

the global metric to a local inertial metric (except on a physical singularity).590

The third and final requirement seems obvious to us in everyday life but is591

often the troublemaker in curved spacetime.592

THIRD REQUIREMENT: COVERING OR EXTENSIBILITY593

Every event must have coordinates. Coordinates must cover all spacetime.Every event
has coordinates.

594

Coordinates that satisfy all three requirements we will call good595

coordinates. Coordinates that fail to satisfy all three coordinates we will call596

bad coordinates. In flat spacetime we can find good coordinates that satisfyGood and
bad coordinates

597

all three requirements. In curved spacetime there are frequently no good598

coordinates.599

The third requirement is often the first to be violated, because in many600

curved spacetimes a single coordinate system cannot cover the entireFrequently:
no good
coordinates in
curved spacetime

601

spacetime while preserving the first two conditions. A simple example is the602

sphere, which requires two good coordinate systems because latitude and603

longitude coordinates violate the second requirement at the poles. We usually604

ignore this while using polar coordinates, even though these coordinates are605

bad at r = 0 (Box 3, Section 3.1).606

Comment 3. The (almost) complete freedom of general relativity607

There are an unlimited number of valid global coordinate systems that describe608

spacetime around a stable object such as a star, white dwarf, neutron star, or609

black hole (Box 3, Section 7.5). Who chooses which global coordinate system to610

use? We do!611
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Near every event (except on a singularity) there are an unlimited number of612

possible local inertial frames in an unlimited number of relative motions. Who613

chooses the single local frame in which to carry out our next measurement? We614

do!615

Nature has no interest whatsoever in which global coordinates we choose or616

how we derive from them the local inertial frames we employ to report our617

measurements and to check our predictions. Choices of global coordinates and618

local frames are (almost) completely free human decisions. Welcome to the wild619

permissiveness of general relativity!620

5.10 EXERCISES621

5.1. Rotation of vertical622

The inertial metric (7) assumes that the ∆xshell and ∆yshell are both623

straight-line separations that are perpendicular to one another. How many624

kilometers along a great circle must you walk before both the horizontal and625

vertical directions “turn” by one degree626

A. on Earth.627

B. on the Moon (radius 1 737 kilometers).628

C. on the shell at map coordinate r = 3M of a black hole of mass five629

times that of our Sun.630

5.2. Time warping631

In a given global coordinate system, two identical clocks stand at rest on632

different shells directly under one another, the lower clock at map coordinate633

rL, the higher clock at map coordinate rH. By identical clocks we mean that634

when the clocks are side by side the measured shell time between sequential635

ticks is the same for both. When placed on shells of different map radii, the636

measured time lapses between adjacent ticks are ∆tshell H and ∆tshell L,637

respectively.638

A. Find an expression for the fractional measured time difference f639

between the shell clocks, defined as:640

f ≡ ∆tshell H −∆tshell L

∆tshell L
(21)

This expression should depend on only the map r-values of the two641

clocks and on the mass M of the center of attraction.642

B. Fix rL of the lower shell clock. For what higher rH-value does the643

fraction f have the greatest magnitude? Derive the expression fmax for644

this maximum fractional magnitude.645
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C. Evaluate the numerical value of the greatest magnitude fmax from Item646

B when rL corresponds to the following cases:647

(a) Earth’s surface (numerical parameters inside front cover)648

(b) Moon’s surface (radius 1 737 kilometers, mass 5.45× 10−5 meters)649

(c) on the shell at rL = 3M of a black hole of mass M = 5MSun (Find650

the value of MSun inside front cover)651

D. Find the higher map coordinate rH at which the fractional difference in652

clock rates is 10−10 for the cases in Item C.653

E. For case (c) in item C, what is the directly-measured distance between654

the shell clocks?655

F. What is the value of fmax in the limit rL → 2M? What is the value of f656

in the limit rL → 2M and rH = 2M(1 + ε), where 0 < ε� 1. What657

does this result say about the ability of a light flash to move outward658

from the event horizon?659

G. Which items in this exercise have different answers when the upper660

clock and the lower clock do not lie on the same radial line, that is661

when the upper clock is not directly above the lower clock?662

5.3. The International Space Station as a local inertial frame663

The International Space Station (ISS) orbits at an altitude of d = 400664

kilometers above Earth’s surface. Astronauts inside the ISS are (almost) in665

free float, because the ISS approximates an inertial frame. It is approximate,666

that is a local inertial frame because Earth’s gravity causes tidal accelerations,667

tiny differences in gravitational accelerations at different locations.668

The size of the ISS along the radial direction is h = 20 meters. Inside the669

ISS, at a point farthest from Earth, an astronaut releases a small wooden ball670

from rest. Simultaneously in the local ISS frame, along the same radial line671

but at a point nearest to Earth, another astronaut releases a small steel ball672

from rest. If the ISS did not depart from the specifications for an inertial673

frame, the two balls would remain at rest relative to each other.674

A. Use a qualitative argument to show that tidal acceleration causes the675

two balls to move apart in the local ISS frame.676

B. Use Newtonian mechanics to show that in the local ISS frame the677

wooden ball moves away from the steel ball with a relative acceleration678

given by the equation:679

a =
2GMEh

(RE + d)
3 ≈ 5.1× 10−5 meter/second

2
(22)

Here the subscript E refers to Earth, and G is the universal680

gravitational constant. How many seconds elapse in the ISS frame for681

the distance between the two balls to increase by 1 centimeter?682
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5.4. Diving inertial frame683

Think of a local inertial frame constructed in a free capsule that dives past a684

local shell frame with local radial velocity vrel measured by the shell observer.685

Use Lorentz transformations from Chapter 1 to find expressions similar to686

equations (9) through (11) that give coordinate increments ∆tdive, ∆ydive, and687

∆xdive between a pair of events in the diving frame in terms of r̄, vrel, and688

global coordinate increments ∆t, ∆r, and ∆φ.689

5.5. Tangentially moving inertial frame690

Think of a local inertial frame constructed in a capsule that moves691

instantaneously in a tangential direction with tangential speed vrel measured692

by the shell observer. Use Lorentz transformations from Chapter 1 to find693

expressions similar to equations (9) through (11) that give coordinate694

increments ∆ttang, ∆ytang, and ∆xtang between a pair of events in the695

tangentially-moving frame in terms of r̄, vrel, and global coordinate increments696

∆t, ∆r, and ∆φ.697
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