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BOUND STATES -- AT LAST!
Most of the electrons around us are bound up in atoms and molecule—and thank goodness.
Loose electrons are dangerous to life.  So is lack of electrons.  Are you taking antioxidant
vitamins to keep molecules with too few electrons from clogging your arteries?

But what ARE bound states of electrons?  And why are these bound states so STABLE, so
unchanging with time?  Almost every object around us maintains its shape, hardness, and
dependability over time—again, thank goodness.

And what have bound states to do with electrons exploring paths through spacetime?  How
are  bound states predicted by the propagators that summarize the results of the electron
exploring ALL worldlines between initial and final events in a given potential?

One of the simplest binding potentials is that of the so-called simple harmonic oscillator, or
SHO for short.  The SHO potential is parabolic in shape;  the value of the potential increases
with the SQUARE of the distance from the center of attraction, creating a kind of “bucket” or
“cup” that contains or binds the charged particle.  See Figure 1.

Figure 1.  The simple harmonic oscillator (SHO) potential.  The potential energy varies with the
square of the distance from the center.  Such a potential can be used to bind a charged particle.
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In a previous unit, Worldlines for the Quantum Particle, we traced out worldlines in a
binding potential. By varying the profile of each worldline, we discovered the shape
corresponding to the minimum number of rotations of the quantum stopwatch between fixed
events of emission and detection. A particle following a minimum-rotation worldline can
start out moving away from the center of attraction but later curve back toward the center.
This particle is bound in the confining potential. A minimum-rotation worldline traces out the
motion of a high-mass particle in the classical limit.

But a quantum particle of small mass, whether free or in a binding potential, does not follow
a single worldline or even a narrow pencil of worldlines. Rather it can be correctly described
only as exploring ALL worldlines between events of emission and detection.  The results of
this all-worldline exploration can be duplicated using the propagator for the given particle in
the given binding potential.

In this unit we explore a quantum particle bound in the SHO potential.  You are not asked to
find the propagator for the SHO—it is a bit complicated!  Instead, you use a piece of software
into which this propagator has already been programmed.  Your task is to explore the
consequences of this propagator for the time development of various initial wavefunctions in
the SHO potential. The propagator is applied between every arrow in the initial wavefunction
and each event in the final wavefunction in order to construct the resulting arrow at each final
event.

One of the consequences of this analysis is of fundamental consequence for our Universe.
There are some unique initial wavefunctions each of whose arrows rotate in unison with the
passage of time but each of these arrows do not change length with time. One example is
shown in Figure 2. The arrows al rotate in unison, but each keeps its same length.

Now, the probability of finding the particle at a given detection event is proportional to the
square of the length of the arrow at that event.  But arrow lengths do not change with time
for this unique wavefunction.  Therefore the probability does not change with time, as shown
in Figure 3.

Because probability does not change with time, these unique wavefunctions are called
stationary, and the quantum state which each such wavefunction describes is called a
stationary state.

In Nature, almost every binding potential has stationary states.  Each stationary state has a
unique energy. At a low enough temperature, a bound system tends to drop into its
stationary state of lowest energy.

A different binding potential (the Coulomb potential of the hydrogen atom, the simple
harmonic oscillator  potential) will have a different set of stationary states and energies. But
each such stationary state is stationary: the probability of finding the bound particle at a given
location does not change with time.
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Figure 2. The lowest-energy stationary state for the simple harmonic oscillator. The arrows rotate with time but
do not change length.

Figure 3. The probability function for the stationary state of Figure 2. The probability does not change with time.
Thus this state earns the name “stationary.”
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PART ONE:  FOOLING AROUND WITH THE SHO SOFTWARE
Start out by fooling around with the SHO software.  Be bold!  Do NOT turn in results of this
initial exploration, but do not neglect it either;  it will inform your understanding and help in
the exercises which follow.  At this point in the course we are all researchers!

Here are some things to try:

SHO POTENTIAL
Start with the default SHO potential—the one present when you start up the program.  Using
the CHOOSE WAVEFUNCTION button, try all the wavefunctions, labeled with letters A
thru K.  How does each of these develop with time in the SHO potential?

Press CHANGE DISPLAY and try all three display modes:  ARROWS and COLOR and
PROBABILITY.  How do the screen pictures differ for these different modes.

Wavefunctions labeled F, G, H, and I are called STATIONARY, that is unchanging with time.
WHAT IS IT that does not change with time?  The arrows? the colors? the probability?

How do the NON-stationary wavefunctions change with time in the SHO potential?  Does
each initial wavefunction—or any of them—re-assemble into its original form after a
particular time?

What, if anything, is special about wavefunctions J and K, which are labeled
SUPERPOSITION?  Do they behave in ways different from the other initial wavefunctions?

ZERO POTENTIAL
Change to zero potential—so that the particle is free, moving without any potential it
influence it.  PREDICT what will happen as time passes to each of the initial wavefunctions A
thru K in the zero potential.  Check out your predictions.

Redo ALL the explorations described above for zero potential.  Are the SHO “stationary”
wavefunctions still “stationary” in zero potential?

PART TWO:  EXERCISES

NOTE: For some choices of time, you will get an INVALID WAVEFUNCTION message. For
an explanation of this message, use the Error menu after Restart. When it is important to
know what happens at an “invalid” time you may need to “straddle” this time on either side
and guess what actually happens AT that time.

Q1.  How much time does it take for arrows in the SHO stationary state #0 (wavefunction F)
to rotate ONE-HALF turn (from arrows straight up to arrows straight down)?  Therefore,
how much time will it take for the arrows in this state to rotate ONE FULL turn?  Therefore,

what is the FREQUENCY, call it f0, of this rotation, in megacycles/second (called
megahertz)?  (In Question Q1 you use one-half turn because one full turn takes longer than
the extent of the vertical time scale.)
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Q2.  How much time does it take for arrows in the SHO stationary state #1 (wavefunction G)

to rotate ONE-FULL turn?  Therefore, what is the FREQUENCY, call it f1, of this rotation?
Give your answer in megahertz.

Q3.  Same question for SHO stationary state #2 (wavefunction H).  Call the frequency f2.

Q4.  Same question for SHO stationary state #3 (wavefunction I).  Call the frequency f3.

Q5.  What is the value of the CLASSICAL frequency, call it fcl, for the default SHO potential?
Derive the answer using the classical period T  given in the lower left of the screen. What is

the relation between fcl and f0, the frequency of rotation of the arrows in the zeroth energy
state?

Q6.  ASSUME that the ENERGY E of a bound state is proportional to the frequency f  with
which its arrows rotate, according to Einstein's famous equation E = hf.  Here h  is Planck's
constant.  Use the results of questions Q1 through Q5 to PREDICT a general formula for the
energies of the stationary states of the SHO in terms of:
(a) the symbol h  for Planck's constant, and

(b) the symbol fcl  for the classical frequency, and
(c) the symbol n for the stationary state (n = 0, 1, 2, 3, . . .), numbered starting with zero as
shown in the SHO program."

COMMENT:  Stationary states for EVERY binding potential have arrows that rotate in
unison.  And these arrows ALWAYS rotate faster for higher energy states.  However, the
FORMULA for the energy as a function of state number n is different for different potential

functions.  Example:  For the hydrogen atom the energy is proportional to MINUS 1/n2,
where n  is a positive integer that starts with the number one.  For wavefunctions in three-
dimensional binding potentials, there will usually be more than one quantum number, for
example a number for angular momentum as well as for energy.

Q7. Using the software to help you to decide, state who is right in the following, Rachel or
Andrew.

RACHEL says, "Each of the wavefunctions for the superposition states J  and K  returns to its

original form after one period T = 1/fcl  of the classical harmonic oscillator."

ANDREW says, "No, the PROBABILITY for each of the superposition states J  and K  returns
to its initial form after one period, but the WAVEFUNCTION does not."
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DISCUSSION:  “SLOSHING STATES”
(Edited interchange with a student.)

PAUL ASKS:
One thing that puzzles me about the non-stationary states:  Are they valid states for an
electron bound in an atom?  It seems to me that we could have an electron moving along in
no potential (like wavefunctions C or D), which then encounters a potential (an atom),
causing its wavefunction to evolve as we see in SHO.  Those wavefunctions are not
stationary, though they seem to stay bound around the zero position.  So it seems like the
electron can be in some state that isn’t n=(0, 1, 2, etc.).  Are they some superposition of the
stationary states?

EDWIN REPLIES:
Paul, you are onto something important here.  Think of water in a pail.  It can slosh around
apparently randomly.  It can also vibrate sinusoidally in time with various different unique
frequencies—each unique frequency having its unique wave pattern.

Same for an electron in the SHO potential (or in a single-electron atom).  It can “slosh
around” apparently randomly.  Or it can be in a state whose arrows rotate in unison.  These
uniform-rotation states are the stationary states.  The wavefunctions for stationary states are
different for the SHO potential and the potential in an atom.  However, for stationary states
in either potential the PROBABILITY does not change at all with time.

And you are onto something even more profound:  Every “sloshing” pattern of water in a
pail can be constructed of a carefully-chosen superposition (adding up at every point) of the
unique sinusoidally-varying patterns.  And every “sloshing” wavefunction of an electron in
the SHO potential or an atom can be constructed of a carefully-chosen superposition (adding
up the arrows at every point) of stationary wavefunctions in that potential.
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