Variational mechanics in one and two dimensions
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We develop heuristic derivations of two alternative principles of least action. A particle moving in
one dimension can reverse direction at will if energy conservation is the only criterion. Such
arbitrary changes in the direction of motion are eliminated by demanding that the Maupertuis—Euler
abbreviated action, equal to the area under the momentum versus position curve in phase space, has
the smallest possible value consistent with conservation of energy. Minimizing the abbreviated
action predicts particle trajectories in two and three dimensions and leads to the more powerful
Hamilton principle of least action, which not only generates conservation of energy, but also
predicts motion even when the potential energy changes with time. Introducing action early in the
physics program requires modernizing the current obscure and confusing terminology of variational
mechanics. ©2005 American Association of Physics Teachers.
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I. PREVIEW: LIST OF ACTORS rently employ Newton’s vector laws of motion to engage
IN ORDER OF APPEARANCE questions similar to that posed by the hurtling asteroid. Least
_ ) action principles, which are powerful tools in analyzing tasks
An asteroid named Woolsthorpe, roaming between the orsimilar to basketball and Moon shots, are introduced only in
bits of Mars and Jupiter, appears to be heading in the genergbvanced mechanics courses which use difficult and abstract
direction of Earth. Should we worry? Given the initial posi- mathematics.
tion and velocity of the asteroid and data on the shifting Earlier we have advocated starting the study of mechanics
positions of nearby asteroids and distant planets as well agith conservation of energy, leading more or less directly to
the Sun, Isaac Newto(1642-1727 tells us how the aster- the principle of least actionWe have since come to believe
oid's velocity changes from instant to instant. By summingthat momentum and Newton’s laws deserve their present
the resulting increments, we derive the reassuring predictioprominence in introductory physics, but that action prin-
that Woolsthorpe will pass f_arther from Earth than our Moon.ciples can and should be introduced early, not only because
Newton answers the questions, “What happens next?”  they prepare the way for advanced mechanics courses, but
Newton's incremental construction of the path is not soglso because they are fundamental tools in many fields of
useful in basketball. Given the initial position and spésud physics such as optics, electromagnetism, quantum mechan-
therefore energyof the ball, the shooter wants to know what jcs, and relativity.
direction of launch will place the center of the basketball at \We do not yet have a strategy for introducing least action;
the center of the basketball hoop. Both launch and targehis paper presents a first step toward that goal, a story line
points are defined in space. Pierre-Louis Moreau de Maupekhat such an introduction might follow. Our purpose is to
tuis (1698-1759 and Leonard Eulef1707-1783 offer us  stimulate discussion about introducing action principles early
their abbreviated principle of least actidno find the direc- in the physics curriculum.
tion in which to launch the basketbalMaupertuis and Euler
answer the question, “Starting frofmere how do we get to
there?” II. ABBREVIATED ACTION IN ONE DIMENSION
None of the three, Newton, Maupertuis, or Euler, could
easily manage a Moon shot. The spaceship launches from its A stone moves with varying velocity in the direction in
Earth orbit and coasts toward an orbit around the Moon. Tha time-independent potential such as that due to gravity near
Earth and Moon are in motion; the spaceship must arrive athe Earth’'s surface. Conservation of energyaisnos) suffi-
the correct point in space when the Moon is nearby. Botltient to predict its motion in one dimension. The total energy
launch and arrival specifgventsindexed by time as well as E is
by location. William Rowan Hamiltoi1805—186% provides
the principle of least actionwhich can be used to find the E=K+U=3mu*+U(y), 1)
required initial speedand therefore energyand direction of L .
Ial?nch to reach Eghe Moon orbit safely. I-?gamilton answers theWherPT the k'r_]et'c energy 15 rgpresented I’_by the symb_ol
question, “Starting from her@ow, how do we get to there used in most_lntroductory physics texUs(y)_ is the p(_)tentlal _
therp” energy, and is the speed of the stone. This speed is approxi-

As these three examples demonstrate, least action prifinated byv~As/At, Wher_eA; is the incremental Qistance
ciples and Newton’s laws form a powerful combination for covered by the stone in timét. For motion in the
the analysis of motion. Introductory mechanics courses cury-direction As=|Ay|. Manipulation of Eq.(1) leads to a
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Fig. 1. Screen shot of the interactive program showing the energy andfig. 2. Two sequential spontaneous reversals of direction with the same
potential energy diagram in the bottom panel, the world(the plot relating speed near positioyy, satisfy conservation of energy but are unphysical. The
position and timgin the middle panel, and a plot of velocity versus position original worldline AB shown in Fig. 1 generates the diagonally shaded area

y in the top panel. The diagonal shading of the area under the velocityinder the velocity curve at the top of Fig. 1. The worldline AC not only
versus position graph has been added for use in comparing alternative mgenerates the same enclosed area, but also adds the superposed dot-shaded
tions depicted in Fig. 2. areas labeled 1 and 2. Area 1 is enclosed twice in this process.

In two and three dimensions, conservation of energy alone
relation betweem\s and the corresponding time increment is not sufficient to determine the particle motion. The reason
At: is that energy is a scalar which tells us only the magnitude
As of the next step along the trajectory, not its direction.
Predicting motion in two and three dimensions also requires
thedirectionof the next step. Equatiof2) gives a preview of
. o . , this difficulty for one-dimensional motion. Conservation of
For the uniform gravitational field near the Earth’s surface, . . : :
the differential version of Eq2) easily integrates to an ana- energy yieldsis, the.magn.ltude of the incremental dlgplacg—
lytic solution. But analytic solutions are available for only a MeNtAY. For one-dimensional motion the two possible di-
limited number of potential energy functions. In contrast, the"€ctions are either-v for which Ay=—As or +v with
one-dimensional motion in all reasonable potentials is easil)Y = +As. For both cases Eq2) gives only the magnitude
predicted using a simple numerical integration method baseds. These two possibilities are illustrated in Fig. 2. Both
on Eq. (2) or improved numerical methods, which are worldlines AB and AC satisfy conservation of energy. World-
straightforward, conceptually transparent, and already in théine AB is the sensible one, the worldline that meets our
toolkits of many undergraduates. expectations as shown in Fig. 1. In contrast, along the world-

Interactive displays can encourage students to manipulalée AC the particle reverses direction twice in the vicinity of
fundamental concepts in mechanics, as illustrated in Fig. 1:the positiony,, keeping the same speed and therefore the
(bottom panel the energy diagram{central panglthe posi- same kinetic energy. In principle, a particle moving in one
tion versus time curve called theorldline, a term which  dimension can reverse direction at will if energy conserva-
should be introduced long before relativitfpp panel the  tion were the only criterion.
velocity versus position diagram, which becomes phase The worldline AC is unacceptable, but not because it has
diagramwhen the velocity is multiplied by the mass. kinks in it; the worldline AB also has kinks, sudden changes

The particle motion shown in Fig. 1 leads to a worldline in velocity at the positions of idealized jumps in the potential
AB that exhibits two “kinks,” sharp changes in slope. The energy as shown in the bottom panel. Rather, the worldline
energy diagram shows that each kink occurs at the locatioAC is unacceptable because it contains spontaneous reversals
of an abrupt change in the potential energy. The result is af the direction unrelated to changes in the potential energy.
sudden change in the velocityhe velocity is the inverse Worse is that there is no logical or physical safeguard against
slope of the worldling displayed in the velocity versus po- an arbitrary number of such spontaneous reversals of direc-
sition graph. So the kinks in the worldline AB have a physi-tion. It is clear that our understanding of particle motion in
cal basis as idealizations. terms of conservation of energy alone is incomplete.

1/2

2
As~ E{E—U(y)} At. (2

604 Am. J. Phys., Vol. 73, No. 7, July 2005 Hanc, Taylor, and Tuleja 604



What other principles can be used to reject spontaneous
reversals of direction? Conservation of momentum applies to
an isolated system; the presence of a potential energy func-
tion due to an external source tells us that the system is not
isolated. Newton’s second law allows us to reject spontane-
ous reversals of direction. In Fig. 2 the reversal occurs where
the potential energy is uniform, so the application
of Newton’s second law says thatAv=~(F/m)At
=[(—dU/dy)/m]At=0 and prohibits these reversals. How-
ever, we seek an alternative procedure for predicting motion
which employs conservation of scalar energy instead of -

Newton’s vector law. X

In Flg. 2'_ Worldl_mes _AB and AC have identical 3|°Pes Fig. 3. The infinitesimal initial portion of the curved trajectory of a particle
(corresponding to identical velocitieeverywhere except in iy the xy plane(dotted ling might represent the first millisecond of motion
the dot-shaded region of the spacetime diagram. So the Vvefa particle that starts at fixed point 1. The dotted trajectory is approximated
locity versus position curves provide a useful tool for high-by three connected straight segments A, B, C.
lighting the difference between these two possible motions.

Pay attention to the area under the velocity versus position

graphs in Figs. 1 and 2. The worldline AB generates thelherefore the incremental contribution to the area is positive:
diagonally shaded area in Fig. 2, identical to the diagonallynv ds. For a particle moving in the negatiwedirection, its
shaded area in Fig. 1. The velocities along the worldline ACvelocity (—v) is the negative of the speedand the incre-
are identical to those along AB except at the double jog neafmental displacemently= — ds) is the negative of the incre-
Yo- The resulting multiple-valued velocity versus position mental distancels. As a result, the incremental contribution
graph for AC encloses the same diagonally shaded area, agd the area also is positiven(—v)(—ds)=muvds.

in addition encloses the dot-shaded areas labeled 1 and 2.1he appreviated principle of least action requires that the

(Arelgl_l iignclosed twice during the motion described by,»,e oS, be a minimum for the actual motion of a particle.
WQI[h ine AC) losed by th locit i In other words, from all possible nearby trajectories in space
€ aréa enclosed Dy ne veloCity VErsus position grap}Beginning at a fixed launch point and ending at a fixed target

provides a handle by which to understand the difference be- _: ; ; ;
tween the realistic motion described by worldline AB and thgpomt, the particle traverses the trajectory with the smallest

unrealistic motion depicted by worldline AC. One way to value ofS,. The construction of the phase curve, times

L ; : he velocity plotted in Fig. 2, requires conservation of en-
,?Jg'g?ttﬁ;w;tlgﬂﬁgﬁ {s\ijeerrsr]i{igftr:z ?ttlr?g zrseg Bgzzﬂﬁefeérgy, so conservation of energy is assumed in the abbreviated
. v rinciple of least action. Note that the abbreviated principle
versusy curve have the smallest possible value consistenfy ieast action is a prescription for the trajectory as a whole,

with conservation of energy. , _ which is different in character from the prescription provided
The momentum versus position diagram is called theby Newton’s second law.

phase diagramand the trajectory in this diagram is called
the phase curveThe area under the phase curve is #e
breviated action and is given the symbdb,:

abbreviate area unde The action integral, Eq4), also applies in two and three

action jj L d!mensmns, where is the speed a_nds is the mcr_emental
distance along the two- or three-dimensional trajectory. The
area under veloci minimization of the actiorS, selects from possible nearby
VS. position curvj/‘ ©) energy-conserving trajectories the actual trajectory followed
. ) L by the particle. For simplicity, we assume that the potential
The reason for “abbreviated” will become apparent. Thegnergy function varies with thg-coordinate only, for ex-
cond|t_|0n that ehmmates the veIo_mty-reversmg jogs in theample,U(y)=mgyfor a basketball.
worldline now becomes: The particle moves so that the ab- To find a trajectory(x) that leads to a minimum value of
breviated action has the smallest possible value, subject tg . Jectonyix) : . -

o IN EQ. (4) for fixed initial and final locations, we divide

conservation of energy. . L ; L
The area under the phase curve can be expressed as: and conquer. If the entire action integral is a minimum, then
the contribution to the integral from each infinitesimal por-

I1l. ABBREVIATED ACTION IN TWO DIMENSIONS

= OE

phase curv

tion of the trajectory also must be a minimdnkigure 3
So= J mo ds shows the initial infinitesimal portion of a trajectory in the
) ] ) ) xy plane(the trajectory is not a worldlineThe dotted curve
(abbreviated action with conservation of engrgy represents the beginning portion of a trial trajectory approxi-

(4) mated by line segments A, B, and C. This approximation can

) ) ) be made as accurate as desired by choosing points 1-4 suf-
Equation(4) uses the speed and the distances instead of  ficiently close together.

the velocitydy/dt and the displacementy, because all in-  Figure 4 shows an alternative initial portion of the trial
cremental contributions to the integral are positive. For arajectory derived by displacing point 2 in thedirection.
particle moving in the positivg-direction in Fig. 2, its ve-  Conservation of energy and the local value of the potential
locity has the same positive value as the speednd the energy fix the average speed of the particle along each seg-
incremental displacemendy is positive and equalgls. ment in Figs. 3 and 4. Finding the portion of the trajectory
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Fig. 4. We vary the/-position of point 2 to minimize the abbreviated action

along segments A and B.

The timet,—t, taken to traverse segment A equals the length
of the segmens, divided by the average speed across the
segment:

Sa
tz_t]_:_.
Ua

(12

The expressions for segment A from E¢&—(12) plus the
corresponding expressions for segment B allow us to recast
Eq. (6) into the form

dSoAB:_ (ta—ty) dU(y) Y—Y1
dy 2 dy point 2 =ty
t;—t,) dU -
B ( 32 2) d(y) Y3 y=0, (19
y point 2 3=t

given by segments A and B reduces to using algebra andnd lead to a powerful result which is hidden in the notation:

elementary calculus to find theposition of the center point

2 that minimizes the abbreviated action for these segments. du(y)

Equation (4) expresses the abbreviated actiSgg along
segments A and B:

SOAB: mu ASA+ mMu BSB . (5)

The lower cases in s, and sg refers to the incremental

dy

point 2

:m(Y3_Y)/(t3_t2) —m(y—y)/(t—ty)
[(t3—1t2)/2] + [(t,—t1)/2]

(14

length of each segment;, and vy are the corresponding The numerator on the right side of Ed4) is the difference
average speeds whose values are derived from conservatiggtween the averagemomentapy, andp,s on segments A
of energy. To find the minimum value of the abbreviatedand B. The denominator approximates the time of travel

actionS,ag, we take the derivative of both sides of E§)
with respect toy (all remaining coordinates are fixeand set
the result equal to zero:

dS)AB_
dy dy

dUB dSB
—— tMm——sSg+ mde—y:O.

dy
(6)

The notation in Fig. 4 leads to expressions for each of th
terms in Eq.(6). The Pythagorean theorem tells us how the
length s, varies withy, the independent vertical coordinate

of point 2:
sa=[ (X=X 2+ (y—y) "2 (7)
Equation(6) requires the derivative of, with respect toy:
dsy, y-y
y Sa

Conservation of energy determines the value of the average

speed along each segment:
1/2

9

2
AE=Ua}

uvpa=

from the midpoint of segment A to the midpoint of segment
B. The right side of Eq(14) thus approximates the time
derivative of they-component of the particle momentum.
The left side of Eq(14) is the value of the quantity dU/dy

at the displaced point 2, the expression for yaeomponent

of the force in a given potential. Thus E@.4) is an approxi-
mation to they-component of Newton’s second law of mo-
éion, an approximation that becomes exact for infinitesimal
Segments:

d, .

Py =at =Py

(15
where the dot over the momentumindicates the time de-
rivative.

Alternatively, minimizing the abbreviated actio8 g
along segments A and B by varying tRecoordinate of the
center point 2 leads to

Xo— X1 X3~ X2
m =
tr—1y ta—t,

Or Pxa=Pxs- (16)

Equation (16) expresses the conservation xfmomentum
between segments A and B and is in accord with Newton’s

Here U, is the average potential energy along segment Asecond law for the case in which the potential enduyys
approximated as the average of the values at its two ends:not a function ok, namelyF,= —dU/dx= 0= p, so thatp,

_Uy)+U(y)

A > (10

The derivative ofv 5 with respect toy comes from Eqs(9)
and(10):

dUA_ 1 dUA_ 1 dU(y)

dy  mua dy  2mu, dy

(11
point 2
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does not change with time.

If your allegiance is to Newton’s second law, then you can
treat Egs.(15) and (16) as validating the abbreviated prin-
ciple of least action when the energy is conserved. Alterna-
tively, you can view Eqgs(15) and(16) as demonstrating the
priority of the abbreviated principle of least action, because
Newton’s second law and conservation of momentum both
grow out of it. We prefer to emphasize here the consistency
among these different predictors of motion.
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ries between the launch and target, one path higher and of
longer duration, the other flatter and of shorter duration. The
technique for constructing trajectories described here will

2 discover only one of these, depending on the initial arbi-
y trarily chosen trial path. Finding the second trajectory re-
A[ A (a) quires a different initial trial function. This case, with its
I 16 —Fixedlaunch 1e alternative analytic solutions, is a good one for introducing
y X —forconstructing the trsjectory(Section 1Y) students to the qualitative skills required to guess trial trajec-
forconstructingthe wotldine (Section Vi) tories when multiple paths are possible.

t

Fig. 5. Construction of the trajectory(x) in two dimensions. The initial \/ JUST PLAIN ACTION

segments are shown. Point 1 is the fixed launch pgatwe first vary the

y-coordinate and then the-coordinate of point 2 to find the location that A small additional step reveals a truly remarkable and gen-
minimizes the value of the abbreviated actiyps along segmentsAand B.  g¢g] expression due to Hamilthlfor which the namection

(b) We move point 2 to that new location, then vary theoordinate, then stands powerfully alone, with no modifier. This action earns

the x-coordinate of point 3 to find the location that minimizes the value of th bolS. without bscript d is defined as:
Soec @along segments B and @ and continuationWe move point 3 to that € Ssymbols, without a subscript, and IS detined as:

new location and continue moving later points on the trial trajectory all the t
way to the fixed final pointthe target, not shownWe repeatedly sweep the S= f (K=U)dt= j
entire trial trajectory until the intermediate points no longer change. The worldline It

resulting trajectory approximates that taken by the particle. As described in . . .
Sec. VII, a similar construction witly andt coordinates approximates the | he following simple expression relates the act®mo the

worldline which minimizes Hamilton’s actio8. abbreviated actios,:**
So= S+ (tfinai— tinitial) E- (18
IV. CONSTRUCTING THE TRAJECTORY Equation(18) can be derived from an extension of Ed):

The procedure outlined in Sec. Il easily adapts to con- B ds )
structing the trajectory of a particle with fixed endpoints and ~ So= | Mv ds= | mv dt= | mu=dt=2 | Kdt.
conserved total energy. Let the segments in the left-hand
Y= o 9 ; , : (19
graph in Fig. 5 be infinitesimal portions of a trial trajectory o ) ) .
drawn arbitrarily to connect the fixed launch poipbint 1) The first integral on the left in Eq19) is a summation along
with the fixed target pointnot shown for a particle of fixed the trajectory in space from the launch to the target. In

total energy. Points 2—4 are a sequence of adjacent poinf@ntrast, the last integral on the right in E49) multiplies
along the beginning of the trial trajectory. As explained in thetWice the kinetic energy along each segment of the path by

caption of Fig. 5, we first vary thg-coordinate and then the the incremental time required to traverse that segment and

x-coordinate of each intermediate point to find the locationSumMS the result. The last integral can be regarded as a sum-
ation along theworldline. Adding and subtracting the po-

that minimizesS, along the two z?\quacent segments. Re.pea{zntial energy functiotJ on the right side of Eq(19) gives
the sweep along the entire modified trial trajectory until N0 o result:

further displacements of the intermediate points ofctie '

resulting path approximates the trajectory taken by the par-

ticle. Equations(14)—(16) tell us that at every intermediate SozszorldlineK dt= onrld"ne(K_ U+K+U)dt

point along the resulting trajectory Newton’s second law

" (K—U)dt (action. (17)

initial

holds.
The total energy and the value of the potential energy at :f _ (K—U)dHf ~ (K+U)dt. (20
the launch point yields the launch speed and the completed werldiine worldiine
trajectory determines the initial direction of motion at The integral containindg —U on the right-hand side of Eq.
launch. Thus the abbreviated principle of least action tells ug20) is the actiorS, as defined in Eq17). In the last integral
how to launch the particléspeed and directionfrom the  on the right-hand side of Eq(20) the total energy
fixed initial point so that it will arrive at the target. ~~ E=K+U does not change with time, and therefore the inte-
The trajectory al_one_does not fully describe th_e motion. Agral equals (na— tiniia) E; EQ. (18) follows immediately.
complete description includes not only the trajectory, but™ g4 ation (18) deserves close scrutiny. Suppose that the
also th_e time at which the partlcle passes each point alongrocedure outlined in Sec. IV leads to the actual trajectory in
the trajectory, plotted as the worldline. The basketball playe pace that minimizes, on the left-hand side of Eq18).
does not care when the center of the ball reaches the Centet, tion IV tells us how to complete the worldline, which
of the hoop® Nevertheless, our procedure can easily be ex>. the i f arrival at the taradt.. H T
tended to find the time at which the particle passes each poiéWVes € time ot arrival at the targ final - Hence minimiz
along the trajectory. Equatiofil2) yields the timet,—t; Ing S.O on t_he "?ﬂ S'd(.a of Eq(18) gIves us everyt_hlng ab_out
along segment A and similar equations give the time ann%he rlght side, including .the WOF'd"”e alqng Wh'c.h the inte-
later segments, resulting in the total time from the launch @l S is taken and the time limits of the integration.
any point on the trajectory. The combination of the trajectory Instead of employing the abbreviated actiyon the left
plus the time at each point on the trajectory, embodied in th&ide of Eq.(18), we try using the actio on the right side to
worldline, provides a complete description of the flight of the predict the motion. The action integralis taken along the
basketball. worldline between the fixed initial and final events. We
A standard result of projectile motion for a value of energyboldly postulatethe principle of least actigrwhich requires
greater than the minimum is the possibility of two trajecto-that the integra in Eq. (17) have a minimum value for the
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The actual worldline of least action must satisfy a minimal
condition not only with respect to the space coordinates, but
also with respect to time. The equation expressing a zero
derivative ofS with respect to time is nothing but conserva-
tion of energy. This result follows from varying the
t-location of event 2 in Fig. 6 while keeping iyscoordinate
constant. The approximate expression for the actip
along worldline segments A and B is

Sap=(Ka—Up)(t—t1) +(Kg—Ug)(t3—1t)
> =(t=t)Ka—(t=t))Upa+ (= )Kg—(t3—t)Ug, (21)

wheret is the time of event 2. The minimum value of Eq.
Fig. 6. Two adjacent infinitesimal segments A and B are chosen arbitrarily21) follows from setting its derivative with respect to

along the trial worldline of a particle moving in one dimension in a time- [t ; ; ;
zero. The aver kinetic ener lon ment A
independent potential. Events 1 and 3 are temporarily fixed, while theequa 0 zero € average elic energy along segme S

y-coordinate of event 2 is displaced in order to find its position 2 for the 1 (Y2_Y1)2 d[(t—tl)KA]

minimum value of the action along segments A and B. KA:EmW o) thatT A-
—h
(22)

worldline taken by the particle between fixed events, that iSThe time derivative oftfz—t)Kg in Eq.(21) yields the result
with known elapsed timé&;,y— tiniia ON the right side of Eq. Kg.

(18). The new least action principle implies a change from Because the potential energy is a function of space coor-
the original constraints—fixed endpoints in space and f'_X?Qljinatey only, the average potential energy, along segment
energy—to physically less restrictive constraints—fixed ini-p qoes not change its value with the time displacement of

tial and final events in spacetime. For all nearby worldlinesgyent 2. Therefore the time derivative of the term in &)
anchored on the same initial and final events, we predict thg

the particle moves along that worldline for which the value hat includestJ , becomes
of Sis a minimum. dl(t—t;)Ua] d(t—ty)

Specifying the arrival event means specifying in advance at =gt Ya=Ua. (23
the arrival timetg,y . But this final time affects the kinetic
energyK along different parts of the worldline required to The time derivative oftz;—t)Ug in Eq. (21) yields the result
meet the specified deadline and therefore affects the value 6f Ug.
the total energyE. It turns out that minimizing the value of  If we substitute Eqs(22) and (23) for segment A plus the
the actionS not only validates the conservation of energy corresponding expressions for segment B into the expression
along the actual worldline, but also yields the value of thefor the derivative of Eq(21) with respect to the time of
conserved energig. event 2 and set the result equal to zero, we obtain

To simplify our study of the action integr8&, we return to ds

; ; ; : ‘o AB

one-dimensional motion and seek a worldliy) that mini- =—Kp—Up+Kg+Ug=0. (24)
mizes the value of between fixed initial and final events. dt
The trial WorIdIine_, a portion of yvhic_;h L_°, ;hown in Fig. 6 Equation(24) can be written as
need not have a direction-reversing jog in it, as was required
for alternative worldlines when the value of the energy was Kg+Ug=Kp+U, or Eg=E,, (25

fixed in advancgsee Fig. 2. Our expectation that the de- , .
rived energy-conserving worldline be smooth for a smoothVhich says that energy is conserved along segments A and B.

potential energy function will turn out to be justified.
Figure 6 approximates a portion of the trial worldline with
incremental straight segments, with the independent coordiy, CONSTRUCTING THE WORLDLINE
natet along the horizontal axis, just as Fig. 4 plots the inde-
pendent coordinate along the horizontal axis. Figure 6 fo-  The worldline of a particle derives from the principle of
cuses on two adjacent segments, A and B, that lie somewheleast action using an iterative process similar to that used to
along this trial worldline. We temporarily fix events 1 and 3 find the trajectory in Sec. IV and illustrated in Fig. 5. The
while moving event 2 in thg-direction to study the effect of sequence of steps is essentially identical to that used for the
this displacement on the value of the actiSgg summed abbreviated action when the origiral y coordinates for a
along segments A and B. A student exercise shows that thgajectory become thé, y coordinates for a worldline, as
outcome is the same: thecomponent of Newton’s la#,  shown by the alternative, y coordinate axes in Fig. 5. We
=py, Eq.(15). Therefore minimizing the actio8 is equiva-  first move they-coordinate and then thecoordinate of each
lent to invoking Newton’s second law. intermediate event to minimize the action along the adjacent
In finding the worldline using the principle of least action, pair of segments, sweeping repeatedly along the worldline
we did not assume in advance that energy is conserved forgetween fixed initial and final events until the intermediate
potential energyJ(y). Nevertheless, if the expressithfor  events no longer move on the spacetime diagram. The result-
potential energy does not contain the time explicitly, theing segmented worldline approximates the worldline fol-
principle of least action includes the conservation of energylowed by the particle.
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The limit-taking process of applying the principle of least t-coordinate of point 2, while keeping its-coordinate con-
action to each pair of adjacent segments in sequence, whetant. Equationg21) and (22) remain valid for the time-
multiple sweeps along the worldline are completed, satisfiedependent potential energy, but Eg3) is altered using Eq.
Newton’s second law and matches the value of the energg6). Setting the time derivative of the action equal to zero
between every adjacent pair of segments,(E6), and there- leads to
fore determines the value of the energy on every segment of q
the worldline. The value oE derived from the principle of Kg+Ug=Ka+ U+ AI_U , 27
least action multiplied by the total elapsed tifiixed at the dt |event 2
beginning of the analysiscompletes the right side of Eg. ) ) y=eonst )

(18). Knowledge of the worldline yields the trajectory, which WhereAt is the elapsed time as the particle moves between
allows us to evaluate the integr8) on the left side of Eq. the midpoints of the adjacent segments. Equat®r) cor-
(18) for the now-determined value of the enerBy In brief, rectly approximates the increase in the total energy of the

either side of Eq(18) predicts the motion of a particle in a P&tiCle as it passes across segments A and B.
time-independent potentiél: Minimizing S, on the left side Another important type of motion takes place under a con-

) . . T straint, for example, a bead sliding without friction along a
for a fixed energy determines the trajectory; minimiz#ign rod that rotates at a constant ratén such motion the forces

theorr|]geht asm(i;ffgfr é" eg)é(raigitr:m?nlg?sr? Sgae”g'gsglé?zxvgldhgﬁ'f constraint typically change the energy of the particle.
pay 9 9 9y ewton’s laws are awkward for describing motion under

a scalar action is the straightforward generalization of thesuch a constraint because of its vector natared for addi-
analysis to motion in three dimensions, in which the poten'tional reasons In contrast, the scalar principle of least action

tial energy function has the general foro(x,y,z). This  yeats such constrained motion with simplicity and power.
generalization requires only a simple extension of the analy-

sis in Secs. IlI-VI. The partial derivative with respect to any

spatial coordinate that minimizes the action or the abbreviy|| SELF-DESCRIPTIVE TERMINOLOGY

ated action leads to the corresponding component of New-

ton’s second law; the partial derivative with respect to time Before we can move the two principles of least action to a
that minimizes action leads to the conservation of energy. position earlier in the physics curriculum, we need to update
the language of variational mechanics, making its terminol-
ogy self-consistent, transparent, and easy to understand. The
Vil. TIME-DEPENDENT POTENTIAL ENERGY present terminology of variational mechanics is clogged with

In many cases the potential energy changes with time. Fdf€ accumulated sludge of ancient trial and error and the
example, the gravitational potential at a point in space bedetritus of genius. Our Murky Terminology Award goes to

tween the Earth and Moon changes as the Moon moves. ThiRdjectives describing constraints of motitiaionomic, semi-
time-varying potential can change the eneEgyf a space- holonomic, rheonomousndscleronomousTerms encrusted

ship moving through that point. Newton’s second law relates
the acceleration to the instantaneous force described by t
spatial derivative of the potential energy, E#j4). Therefore
Newton's law applies from instant to instant, even if the
potential changes with time.

Constructing the worldline using the principle of least a _
tion involves a variation of thg-coordinate of each interme- power of action.

diate event on the worldline, while holding constant the time deg:]?i t?\?(ramf'héosreIgggsr;}?ctg/aenfasm(taog;sansgg'lélgt bﬁncsie:fe_
of that event, as illustrated in Fig. 6. Our approximation plive. P ject, b P'e,

takes the value of the potential energy along each segment ) application recalls for us and drives home its key feature

be the average of its two endpoints. The endpoints in Fig. gvery time we read, speak, hear, or apply it. First prize for a

L : Self-descriptive name goes bdack hole which summarizes
are events, and the approximation corresponding to(E. the properties of a mighty astronomical object. The term

ith the barnacles of eminent contributors’ names obstruct
e flow of understanding. Who could know from the names
amilton’s principal functionor Lagrange’s equationsvhat

each is about, how they are used, or why they might be
important3* Students should not be forced to master a poly-
c.glot language before they can revel in the simplicity and

'S black hole is not only descriptive but also exciting, firing the
U(ty,y1)+U(ty,y) public imagination. The original study of collapsed gravita-
Ua~ 2 : (26)  tional structures did not lead to this term. The name was long

sought, stumbled upon, recognized, and promoted by John
The variation of they-coordinate of event 2 does not change Archibald Wheelef®
the timet, of that event, so the minimum action again leads Why not replaceabbreviated actiorwith the termfixed-
to Newton’s second law. Indeed, it can be shown that thenergy actionor trajectory actior? CouldLagrange’s equa-
principle of least action is equivalent to Newton’s second lawtions becomelocal equations of motich It may be difficult
for nondissipative systent8 Therefore the principle of least to find self-descriptive names for fundamental concepts of a
action is also valid for time-varying potentials. In contrast,field, but these names should at least be snappy and motivat-
the principle of abbreviated action assumes conservation ahg. We would not be writing a paper promoting the use of
energy, so it cannot predict motion when the potential energydamilton’s principal function but Landau and Lifschitz, and
varies with time. later Feynman, renamedattion, cutting the number of syl-

Does the principle of least action also lead to a correctables by three-quarters and invigorating the fiéld.

accounting of the changing particle energy when the poten- Even the field of mechanics needs new nant&assical
tial energy changes with time? The analysis is a simple exmechanicscurrently means nonquantum mechanics; special
tension of the one that leads to E®5). Minimizing the  and general relativity are classical subjects. This paper fo-
action along segments A and B in Fig. 6 requires varying theuses on the more restricted field déwtonian mechanics
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which predicts nonrelativistic, nonquantum motion. New- SWolfgang Yourgrau and Stanley Mandelstaiariational Principles in
ton’s greatness is not enhanced by using his name to smothgpynamics and Quantum Theofover, New York, 1978 pp. 24-29.

magisterial contributions by Euler, Lagrange, Jacobi, Hamil- ‘Richard P. Feynman, Robert B. Leighton, and Matthew Sanis,Feyn-
ton. and others man Lectures on Physi¢éddison—Wesley, San Francisco, 196¥ol. II,

p. 19-8.
8The minimization procedure for constructing a trajectory or worldline de-
ACKNOWLEDGMENTS scribed in the caption to Fig. 5 is conceptually simple but not the most
. effective in practice. In both cases it is more efficient to start with a trial
The authors wish to thank Kenneth Ford, Don S. Lemons, segmented curve with equal increments along the horizontal axis. Then we

and Jon Ogborn for useful discussions and helpful sugges-vary only they-coordinates of intermediate points to minimize the action,

tions. obtaining the actual path. The minimization of action with respect to co-
ordinates along the horizontal axis is not necessary because the result is
dElectronic mail: jozef.hanc@tuke.sk just points uniformly distributed on the horizontal axis, which was our
YAuthor to whom correspondence should be addressed. Electronic mail: initial assumption. We do not discuss here the proof of this statement or
eftaylor@mit.edu the convergence of the algorithm, because it goes beyond the scope of the
9Electronic mail: tuleja@stonline.sk present paper.
We use the namkeast actioninstead of the technically correstationary According to the official rules of the National Basketball Association, a

actionfor several reasonga) Many cases involve a local minimum of the  basket is scored after the final buzzer provided the ball is launched before
action.(b) The value of the action is always a minimum for a sufficiently the buzzer sounds.

small segment of the curvéc) The word leastis self-descriptive, but 1% or Hamilton’s development of the principle of least action, see two of his
stationaryrequires additional explanatiofd) The word least does notlead  papers  at (http://www.maths.tcd.ie/pub/HistMath/People/Hamilton/

to the error that the value of either form of action, E@.and(17), can Dynamicsy.

be a maximum for an actual path, which it canr(@}. Least action is the 1 gndau and Lifschitz, Ref. 5, p. 141, Ed4.3; Goldsteinet al, Ref. 5, p.
name most often used in the historical literature on the subject. We rec- 359

ommend that the term stationary action be introduced, with careful explai2pyy gerivation can be reversed to show the equivalence of Newton’s sec-

nation, not long after the term least action itself. ond law and the principle of least action. See also Goldsiewl, Ref. 5,
For linear gravitational potential energy near the Earth’s surface, we can , 35

integrate Newton’s second law to derive an analytic expression for thaaThe example of a bead sliding along a uniformly rotating rod is in Gold-
basketball trajectory and hence the required direction of launch. However, steinet al, Ref. 5, pp. 28—29. Additional example is a pendulum whose
in more complicated potentials we are rec'lu.ce'd'to trial and error t'o find a string sup’port is ’slowly pulled up through a small hole. See Cornelius
path that passes through the basket. Minimizing the Maupertuis—Euler Lanczos, The Variational Principle of MechanicgDover, New York
abbreviated action finds the trajectory in one stroke. A similar comment 1986 4t‘h ed., p. 124 ' '
applies to the Moon shot described in the following paragraph: Minimiz- 14Furth;er exam.ble.s of ﬁame-encrusted terminology: d’Alembert’s principle
ing Hamilton’s action gives us the worldline directly. N S o I ) . ’
3Jozef Hanc and Edwin F. Taylor, “From conservation of energy to the Hamiltonian, Hamilton’s principle, Hamilton’s equations, Hamilton—
principle of least action: A story line,” Am. J. Phyg2, 514—521(2004 Jacobi equation, Jacobi identity, Jacobi principle, Jacobi condition, Jaco-
4Derivations of the action outlined i'n this paper V\;ere stimulated by an bi's theorem, Lagrangian, Poisson bracket, Poisson’s equations, Hilbert
integral, Legendre condition, Poincare invariants, Cartheodory’s method,

interactive Java program developed by one of the autf®fs This dis- . - ’
play numerically integrates E@2), solving for the one-dimensional mo- Bernoulli's method, Clebsch condition, Clebsch relation, Clebsch transfor-

tion of a particle in a time-independent potential. In its extended form, the Mation, Descartes—Snell rule, Noether’s theorem, Rayleigh's dissipation
program shows all three panels in Fig. 1. The program is available at function, Routh’s procedure, Staeckel conditions, Weierstrass condition,
(http://vscience.euweb.cz/worldlines/Worldlines.html Weierstrass—Erdmann corner condition.

5The nameabbreviated actiorand the symbo§, are used by L. D. Landau ~Kip S. Thorne, Black Holes and Time Warps: Einstein's Outrageous
and E. M. Lifschitz,Mechanics(Butterworth-Heinemann, London, 1999 ~ Legacy(Norton, New York, 199% pp. 256-257; John Archibald Wheeler
Vol. 1, 3rd ed., p. 141, and Herbert Goldstein, Charles Poole, and John With Kenneth FordGeons, Black Holes, and Quantum Foam: A Life in
Safko, Classical Mechanic¢Addison—Wesley, San Francisco, 2002rd Physics(Norton, New York, 1998 pp. 296-297.

ed., pp. 359, 434. We have named the corresponding variational principlé®Landau and Lifschitz, Ref. 5, Chap. 1; Landau and Lifschitz rechristened
the abbreviated principle of least actipmather than the more technically ~ Hamilton's principal functionas theactionin the first Russian edition in
correctprinciple of least abbreviated actiofelieving that “least abbre- 1958, and in a 1940 textbook, a precursor of Ref. 5; See also Feynman,
viated” might be incorrectly interpreted as “augmented.” Ref. 7.
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