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Lagrangian methods lie at the foundation of contemporary theoretical physics. Several recent
articles have explored the possibility of making the principle of least action and Lagrangian methods
a part of the first-year physics curriculum. I examine some of this proposal’s implications for
subsequent courses in the undergraduate physics major, and focus on the influence that this proposal
might have on the selection of topics and the opportunities this proposal presents for teaching these
courses in a more contemporary way. Many of these ideas are relevant even if students first learn
Lagrangian methods in a sophomore mechanics course. ©2004 American Association of Physics Teachers.
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I. INTRODUCTION

Hamilton’s principle,1 more generally known as the prin
ciple of least action~particularly since the publication o
Feynman’s lectures2! has played a seminal role in the deve
opment of theoretical physics in the latter part of the 2
century. Lagrangian methods that extend this principle lie
the heart of general relativity, quantum field theory, and
standard model of particle physics, and such methods pl
crucial role in conceptually framing and expressing the
theories.

Edwin Taylor has recently argued that this principle p
vides a simple but powerful framework for unifying Newto
ian mechanics, relativity, and quantum mechanics,3 and he
and his collaborators have begun to lay the foundations
teaching the principle in the introductory course.4–8 If we
presume that this proposal is possible and desirable, it
implications for subsequent courses in the physics major
this article, I will examine some of these implications, focu
ing on new opportunities that teaching least action in
introductory course makes possible, as well as on w
changes in upper-level courses might best support these
portunities in subsequent courses.

My purpose is not to describe a new upper-level curri
lum in detail. Instead, I hope that by presenting an overv
of the issues and providing references to some available
sources, I will provide some guidance to those who mi
develop such curricula. This article also might be interest
to those seeking to modernize the upper-level courses
follow an intermediate mechanics course which discus
Lagrangian methods.

II. THE MODERN PHYSICS COURSE

Most upper-level physics curricula open with a course
‘‘modern physics,’’ which for the sake of argument in wh
follows, I will assume to be a sophomore-level class tha
least discusses special relativity, some basic quantum the
atomic and nuclear physics, and perhaps some particle p
ics. In a curriculum where the classical principle of lea
action is taught in introductory physics, the modern phys
course might be reworked somewhat to address two im
tant goals: connect the classical principle of least action w
quantum mechanics and relativity, and build a solid foun
tion for using the principle in subsequent courses. I will d
cuss the link to quantum mechanics first~for reasons that
will become clearer as we go!.
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Taylor, Vokos, O’Meara, and Thornber have recently pu
lished a curricular plan that connects quantum mecha
with the principle of least action at a level that seems app
priate for sophomores.9 This plan starts with the student
working through the first half of Feynman’s popular boo
QED.10 Feynman’s book demonstrates that it is possible
explain the results of classical optics in a variety of practi
situations using the following simple model: a photon e
plores all possible paths between emission and detection
imagine the photon traveling along each possible path
carry an arrow that rotates a number of times that is prop
tional to the action along that path, and the probability th
the photon will be observed at the detection event is prop
tional to the squared length of the vector sum of the fi
arrows for all the paths that the photon explores. Sophom
level majors~unlike Feynman’s intended audience! should be
able to understand that the arrows are visual representa
of complex numbers, but this visualization is powerful a
useful even when students can do the calculations with c
plex numbers.

The fundamental problem with the ‘‘explore all paths
model is that actually summing the arrows over all possi
paths is a daunting task. Taylor and his collaborators m
this task simpler by providing computer programs that co
pute the sums for various simple paths so that students
explore the implications of the model. Building on this fou
dation, Taylor and his collaborators~aided by more pro-
grams! then extend Feynman’s description to help stude
discover methods for handling free electrons and then e
trons with potential energy, the concept of a wave functi
the concept of the free-particle propagator, and ultimately
concept of a bound-state wave function, all with very litt
mathematics.

The method Taylor and his collaborators use to deve
the free-particle propagator illustrates their general appro
to making difficult ideas more accessible. The key to mak
the ‘‘explore many paths’’ approach practical is to get rid
the summation over all possible paths. The world li
through spacetime between a given starting eventa and a
given ending eventb that has the least action is by definitio
the world line along which the particle’s arrow undergoes
fewest turns from start to finish. With the help of the com
puter programs, a student can find that the only paths
contribute significantly to the arrow representing the fin
sum at eventb are those contributing final arrows that ma
an angle of less thanp with the arrow contributed by the
world line of least action; neither the length nor the directi
522© 2004 American Association of Physics Teachers
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of the sum is much affected if one ignores all other pat
Indeed, one finds that for a free particle, the direction~in the
complex plane! of the arrow representing the sum atb is
always rotated by 45° relative to the direction of the arr
contributed by the least-action world line atb ~which in turn
is simply a rotated version of the arrow at the initial eventa!,
and the sum’s magnitude depends on how far a path m
deviate from the least-action world line to yield a contribut
arrow that makes an angle ofp with the least-action arrow.

Therefore it should be possible in principle to forego t
sum entirely and calculate the arrow representing the s
over all paths by rotating the direction of the arrow contr
uted by the single least-action path by 45° and multiply
by a factor that specifies the degree to which small de
tions from this path affect the angle of the path’s contribu
arrow. For a free particle, this factor can only be a funct
of the particle’s massm, Planck’s constanth, the time inter-
val between the initial and final events, and the spatial se
ration of those events. Taylor and his collaborators9 argue
that we can determine the correct expression for this fa
by assuming that a free-particle wave function which is u
form over space at a certain time must remain uniform
time passes~a result required by symmetry!. We can consider
any wave function at a given time to be a set of arrows~that
is, complex numbers! distributed over space. Assume that w
know the wave function arrowsc(xi ,t0) at various positions
xi at some initial timet0 . The arrowc(x,t) at a different
positionx and later timet is determined by determining th
sum of the arrows contributed by all paths starting from
arrow c(xi ,t0) at a givenxi at time t0 and arriving at posi-
tion x and timet, and then summing over allxi ~see Fig. 1!.
For the free particle, we can do the sum over all paths
calculating the arrow contributed by the least-action p
from xi ,t0 to x, t ~which is a straight world line for a free
particle! and use a formula~rule! involving h, m, t2t0 , and
x2xi to convert this arrow to an arrow representing the s
over all paths. By using a program constructed for this p
pose, students can experiment with different rules until th
find one that preserves the uniform wave function. The p
cess is quite intuitive and requires very little mathematic

Once we know how to generate a future wave funct
from a past one, we can generalize to particles that are
free and begin to explore both stationary and dynamic st
of bound particles.9 After developing the general concept
a stationary state, we might introduce the Schro¨dinger equa-
tion and explore bound states of other systems in a m
conventional manner.

The approach in Ref. 9 is plausibly accessible
sophomore-level physics majors, and has the advantag
giving these students a deeper, more intuitive, and perh

Fig. 1. We can calculate the wave function amplitudec(x,t) at positionx at
time t by using Eq.~1! to calculate the contribution of the wave functio
amplitudec(xi ,t0) at a positionxi at an earlier timet0 and then summing
over allxi . The diagonal lines show the direct paths that connect the var
pointsxi with the final pointx.
523 Am. J. Phys., Vol. 72, No. 4, April 2004
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more engaging understanding of quantum mechanics
one typically gets in a modern physics course. Moreover,
approach is the only way that I know in which we mig
plausibly link the classical principle of least action and qua
tum mechanics at this level. This approach, however, w
take a fair amount of class time, and thus will probably d
place some other topics usually covered in such a cours11

Next I would like to discuss the treatment of special re
tivity in the modern physics course. The argument about
propagator assumes that the reader understands what ev
world lines, and spacetime diagrams are~Fig. 1 is essentially
a spacetime diagram!. Therefore, a careful treatment of the
concepts in the relativity portion of the course is essential
the success of the quantum section. My experience is
taking the time to teach students to use spacetime diagr
and the geometric analogy to relativity before teaching
Lorentz transformation equations greatly improves their
derstanding. Students understand much better the meani
the Lorentz transformation equations after they have see
spacetime diagram that shows the axes for two different
erence frames, and after they have understood the cru
differences between coordinate measurements and the in
ant spacetime interval.

The other topic that needs to be explored is the concep
a four-vector. This concept not only makes the relations
between energy, momentum, and mass much easier to un
stand, but it provides an essential foundation for any fut
application of Lagrangian methods to special relativity, ge
eral relativity, or electricity and magnetism. This course
not where we should introduce index notation and the E
stein summation convention, but most students at this le
understand column vectors and matrix multiplication, and
can go a long way with these tools and explore the m
crucial characteristics of four-vectors~such as their transfor
mation properties, the invariance of a four-vector’s mag
tude, the invariance of the dot product of four-vectors, a
the frame-independence of four-vector equations!.

This part of the course also should link the classical pr
ciple of least action with the principle that a straight wor
line is the world line of longest proper time between tw
given events~the latter is easily proved using an elementa
argument12,13and should be a part of the development of t
concept of proper time!. The actionS for a relativistic free
particle for a given world line can be written as

S52mc2E dt, ~1!

wherec is the speed of light, and the integral yields the to
proper time measured along the path. The minus sign ens
that the action is a minimum for whatever path has maxim
proper time, and the factormc2 gives the action the appro
priate units and the correct linear dependence on the p
cle’s mass.

We can write Eq.~1! in the form of a coordinate-time
integration over a Lagrangian as follows:

S52mc2E dt

dt
dt52mc2EA12

n2

c2 dt, ~2a!

which implies that

L~nx ,ny ,nz!52mc2A12
n2

c2. ~2b!

s

523Thomas A. Moore



n
ci
c

ar
ow
th

gh
p-

is
ll
at
fo
e
er
nd

te
ic
p
n
s
o

m
en
lo
e

o
ul
ti
fe
d

tu
m
a

or

d
th

f
s,
an

d
ha

in

ld-

le

e
is-

-
on-

all
t

ng
e
-
of

f

-

t

t it
A simple application of the Euler–Lagrange equations a
some basic calculus establishes that the particle’s velo
components must be constant. We see, therefore, that we
develop a relativistic principle of least-action for a free p
ticle and obtain the constant-velocity result that we kn
must be true from other arguments. This result supports
idea~used in the quantum section! that the world line of least
action for even a relativistic free particle is indeed a strai
world line, and Eq.~2b! is an essential first step in develo
ing an electromagnetic Lagrangian.

Such a discussion would imply a relativity section that
three to four weeks long, which is more time than is usua
spent on the topic. In what follows, however, I will show th
this discussion would open up significant opportunities
subsequent courses. Because applications of relativity ar
creasingly important in modern technology, a solid und
standing of relativity is more important to physicists a
engineers now than it was even two decades ago.14

III. THE INTERMEDIATE MECHANICS COURSE

The next course a typical physics major might encoun
would be one in intermediate classical mechanics, wh
typically discusses subjects such as orbital motion, dam
and driven harmonic oscillators, rotation of rigid bodies, a
perhaps even some chaos and non-linear dynamics. Text
this course commonly include a discussion of the principle
least action and Lagrangian methods.15 If these ideas are
thoroughly discussed in the introductory course, then so
time would become available in this course. My recomm
dation is that at least some of this extra time be spent exp
ing the application of Lagrangian methods to continuous m
dia. This application is important because the same meth
apply to fields, so this discussion of continuous media wo
provide essential background for any subsequent applica
of Lagrangian methods to the electromagnetic field. Re
ence 16 presents a very nice discussion of continuous me

IV. QUANTUM MECHANICS

Most undergraduate major programs include a quan
mechanics course in the junior or senior year. I will assu
that students in this course are familiar with partial deriv
tives, complex numbers, looking up integrals, and Tayl
series expansions.

A crucial first step in this course would be to firmly an
formally connect the explore all paths model presented in
sophomore course with the time-dependent Schro¨dinger
equation. Once this connection has been made, the rest o
course can be taught in the standard way. In what follow
will briefly sketch the logic of the argument: more details c
be found in Ref. 17.

In the sophomore-level course, students should have
covered that for a free particle, the propagator function t
species the contribution to the quantum amplitude~arrow!
c(x,t) made by arrows of the particle’s wave function with
a sufficiently small rangeDxi around the positionxi at an
earlier timet0 is given by

K~x,t,xi ,t0!c~xi ,t0!Dxi5A m

h~ t2t0!i
eiSdirect/\

3c~xi ,t0!Dxi , ~3!
524 Am. J. Phys., Vol. 72, No. 4, April 2004
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whereSdirect is the action measured along the straight wor
line from xi ,t0 to x, t. For a free particle moving in one
dimension with a constant potential energyV, the value of
Sdirect is simply

Sdirect5~T2V!Dt5F1

2
mS x2xi

Dt D 2

2VGDt5
mu2

2Dt
2VDt,

~4!

whereDt[t2t0 is the~coordinate! time difference between
the events andu[xi2x. So in this case, we have

K~x,t,xi ,t0!5A m

h~ t2t0!i
expS imu2

2\Dt DexpS 2
iDt

\
VD .

~5!

To find the complete wave function amplitudec(x,t), we
must sumKc(xi ,t0)Dxi over all possible initial positions
xi , as schematically shown in Fig. 1. Note that the midd
factor in Eq. ~5! is the only thing that varies asxi varies,
because it will causeu to vary, and this term rotates th
phase angle of the resulting complex amplitude. As d
cussed, arrows rotated by an angle greater thanp relative to
the arrow foru50 do not contribute significantly to the re
sult, and we really only need to be concerned about the c
tributions from the initial positionsxi close enough to the
final positionx so that

mu2

2\Dt
,p or u2,

h

m
Dt. ~6!

Equation~6! proves to be the key to using the explore
paths approach to derive the Schro¨dinger equation. Note tha
if we choose the time stepDt5t2t0 between the initial and
final wave functions to be infinitesimal, thenu also must be
infinitesimal, which means that the positions of points alo
all the paths in Fig. 1 that contribute significantly will not b
much different fromx. Therefore, even if the particle’s po
tential energy varies with position, its value over the range
interest for calculatingc(x,t) will be essentially equal to
V(x), its value atx, so Eqs.~3!–~5! apply even to the case o
nonuniformV(x) in the limit Dt→0. The sum over allxi in
this limit therefore becomes

c~x,t !5A m

ihDt E2`

`

expS imu2

2\Dt D
3expS 2

iDt

\
V~x! Dc~x1u,t0!du, ~7!

becausexi5x1u anddxi5du. If we expand the exponen
tial involving V to orderDt, c(x1u,t0) to orderu2, and do

some integrals of the form*2`
` une2au2

du,18 we find that

c~x,t !5c~x,t0!102
\Dt

2im

]2c

]x22
iDt

\
V~x!c~x,t0!.

~8!

If we subtractc(x,t0) from both sides, multiply through by
i\/Dt, and take the limitDt→0, we find the time-dependen
Schrödinger equation for one dimension.~It is not very dif-
ficult to generalize this derivation to three dimensions, bu
does not yield any deeper understanding.!
524Thomas A. Moore
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V. ELECTRICITY AND MAGNETISM

The undergraduate curriculum also typically includes
course in electricity and magnetism offered at the sop
more, junior, or senior level. I will assume that this course
offered for juniors and/or seniors and that students h
taken a modern physics course and intermediate mecha
course of the type already described.

The first task in this course would be to discuss ind
notation and the Einstein summation convention, the Lore
transformation properties of scalars, vectors, and covec
and the four-gradient. My experience is that juniors and
niors can become comfortable with this material within fo
to five class sessions if the material is taught carefully.19 The
relativistic Lorentz force law provides a good physical co
text for practicing the notation. In appropriate units,20 this
law can be written as

dpm

dt
5qFmnun , ~9a!

where

Fmn5F 0 2Ex 2Ey 2Ez

Ex 0 2Bz By

Ey Bz 0 2Bx

Ez 2By Bx 0

G , ~9b!

and un is the charged particle’s four-velocity with compo
nentsut5@12n2/c2#21/2[g, ui5gn i /c, pm5mc um is the
particle’s four-momentum,q is its charge,t is the proper
time measured along its world line and I am using a me
with a timelike signature~1222!. Equation~9! involves
scalars, vectors, covectors, and tensors and yet when
sums are written out explicitly, the three spatial compone
reduce to the Lorentz law taught in introductory physics a
the time component reduces to conservation of energy.
examining the transformation properties of all the piec
students can demonstrate that Eq.~9! must have the sam
form in all reference frames. It also is a good exercise
students to show that the antisymmetric nature ofFmn en-
sures thatd(pmpm)/dt50, meaning that the particle’s res
massm5pmpm is fixed.

To fully connect electricity and magnetism with the pri
ciple of least action, we also must develop the concept of
magnetic potentialA. Textbooks at this level avoid or ma
ginalize the magnetic potential, partly because when i
presented in the usual way, it can be a tricky and abst
concept. However, there are ways to make the magnetic
tential more accessible,21 and there are some good reasons
discuss it fully even if we ignore the principle of lea
action.22

One possible story line for introducing the four-potential
made possible by the principle of least action. The action
a non-relativistic particle moving in a static electric field i

S5E ~T2V!dt5E S 1

2
mn22qf Ddt. ~10!

Our goal is to see if we can guess the appropriate relativ
action for this case. We already know how to generalize
kinetic energy part; the action for a free particle is given
Eq. ~2a!. Like this part, whatever we add to the action
account for the field must be a relativistic scalar. But is
electric potentialf a relativistic scalar or something else? B
525 Am. J. Phys., Vol. 72, No. 4, April 2004
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considering the field between the plates of a parallel-p
capacitor when viewed in a frame moving parallel to t
plates, it can be quickly argued thatf must transform like
the time component of a four-vector. So in a fully relativist
expression for the action, the electromagnetic field must
pear in the form of a four-vector that we will callAm. How-
ever, the term we add to the Lagrangian must be a relativi
scalar, so the term must be the dot product ofAm and some
other four-vector. The only available four-vector in the ca
of a point particle is the particle’s own four-velocityum. So
we propose a relativistic action of the form

S52E ~mc21qumAm!dt52E ~mc21qumAm!
dt

dt
dt

~11a!

5E S 2mc2A12
n2

c22qf1
q

c
v"AD dt, ~11b!

where the components ofA are the spatial components o
Am. We can easily show thatS in Eq. ~11b! reduces to Eq.
~10! in the non-relativistic limit~except for an extra rest en
ergy term that does not affect the motion!.

What kind of motion does this principle imply? Althoug
we can quickly give the result in index notation, let me de
onstrate the argument in a form that might be more acc
sible to a junior physics major. Consider thex component of
the Euler–Lagrange equation. The partial derivatives of
Lagrangian in this case are

]L

]x
52q

]f

]x
1

q

c S nx
]Ax

]x
1ny

]Ay

]x
1nz

]Az

]x D , ~12a!

]L

]nx 5
mnx

A12n2/c2
1

q

c
Ax5px1

q

c
Ax, ~12b!

wherepx is the relativistic momentum. The Euler–Lagran
equations in this case therefore imply that

dpx

dt
1

q

c S ]Ax

]t
1

]Ax

]x
nx1

]Ax

]y
ny1

]Ax

]z
nzD

52q
]f

]x
1

q

c S nx
]Ax

]x
1ny

]Ay

]x
1nz

]Az

]x D , ~13a!

which implies that

dpx

dt
52q

]f

]x
2

q

c

]Ax

]t
1

q

c
nyS ]Ay

]x
2

]Ax

]y D
2

q

c
nz S ]Ax

]z
2

]Az

]x D . ~13b!

The usual definition of the electric field is the force per u
charge on a test charge at rest, so we have

Ex52
1

c

]Ax

]t
2

]f

]x
. ~14a!

If we identify

B5¹3A, ~14b!

we can easily see that Eq.~13b! is equivalent to thex com-
ponent of the Lorentz force law given by Eq.~9a!. We also
can see quite generally that

Fmn5]mAn2]nAm, ~15!
525Thomas A. Moore
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and that Faraday’s law and divB50 are identities implied by
Eq. ~15!.

Once we have gone this far, we can derive the sou
dependent Maxwell equations from a plausible principle
least action.23 Students should know from the treatment
continuous media in the intermediate mechanics course
a least-action principle for the electromagnetic field will i
volve integrating a Lagrangian density over all space a
time. This Lagrangian density must be a relativistic sca
and must involve a term that is quadratic in the field qua
ties. These requirements imply that the resulting Eule
Lagrange equations will produce linear differential equatio
in the field, which is required for the field to obey the sup
position principle. The only plausible candidates for su
terms areAmAm and FmnFmn. The first of these leads to
absurd results, for example, the resulting field equation
the electrostatic case involvef directly, not the derivatives
of f, which does not match Gauss’ law. For the second c
we can argue that the sign of the integral has to be nega
for the quantity to have a plausible minimum,24 and that we
must have a factor of 1/k ~wherek is Coulomb’s constant! to
make the units come out right. The Lagrangian density a
must involve a term that is linear in the four-currentJm

5@r,j /c#, wherej is the ordinary current density, so that th
sources will appear linearly in the field equation. The on
plausible term with the right units in this case isAmJm.
Therefore, the least-action principle for the electromagn
field must be something like

S5E S 2
1

k
FmnFmn1bAmJmDdt dx dy dz

5E S 2
1

k
@gmagnb~]mAn2]nAm!~]aAb2]bAa!#

1bAmJmDdt dx dy dz, ~16!

where gma is the inverse flat-space metric andb is some
unitless constant that specifies the relative magnitude
sign of the two terms. The field quantitiesAm play the role of
coordinates and the gradients]mAn play the role of ‘‘veloci-
ties.’’ With only a bit of work,25 the Euler–Lagrange equa
tions yield

]m~]mAn2]nAm!5]mFmn52
bk

4
Jn. ~17!

If we chooseb5216p, the time component of Eq.~17!
matches Gauss’ law. By writing them out, students can
cover that the other components spell out the Ampe
Maxwell relation.

VI. OTHER INTERESTING APPLICATIONS OF
LEAST ACTION

Because many electromagnetic circuits have direct
chanical analogs, we often can use Lagrangian method
find equations of motion for such circuits, even for ve
complicated electromechanical circuits. It turns out that
can even handle realistic resistors by treating them as ge
alized external forces. These issues~along with many other
applications of Lagrangian techniques! are beautifully dis-
cussed by Wells.26
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Another interesting source of applications of the princip
of least action to fields at a fairly advanced level is a bo
written some time ago by Soper.27 This book even includes a
discussion of dissipative effects that might be appropriate
an upper-level course.

Once students are used to the principle of least act
other variational calculations become conceptually simp
Several years ago, Van Baak discussed a variational t
nique that enables one to solve complicated steady-state
cuits without invoking Kirchoff’s loop rule.28 Because apply-
ing the loop rule requires careful attention to signs, it is
common source of student errors. Van Baak’s appro
avoids this problem.

Finally, I point out that if students have studied spec
relativity in some depth and have seen index notation
know about four-vectors, covectors, and tensors, they ha
background that provides a great springboard for study
general relativity. The geodesic equations of motion can
treated as a least-action principle. One can even use a
grangian to find equations of motion for the gravitation
field,29 a method widely used by researchers in the field~par-
ticularly those doing numerical simulations!.

VII. CONCLUSIONS

My goal has been to reflect on what kinds of changes
the upper-level curriculum might help students take full a
vantage of an introductory-level exploration of the princip
of least action. I have only provided a broad sketch; ther
much work to be done before these suggestions can bec
anything approaching a practical curriculum. The propos
changes would in some cases mean shifting priorities to
low sufficient time for the development of some of the tec
niques, and I have no doubt that some of the changes w
present problems that would have to be worked out.

However, the proposed changes could create a very e
ing upper-level curriculum that could more clearly displ
the deep underlying connections between mechanics, rel
ity, electrodynamics, and quantum mechanics. These cha
would give us a thoroughly 21st-century physics curriculu
that teaches viewpoints and techniques currently used by
searchers. The principle of least action is among the m
beautiful and powerful physical principles ever envisione
With some vision and effort, the least action principle cou
become a greater part of the common background of phy
undergraduates.
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