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C H A P T E R

21 Inside the Spinning Black Hole18

Edmund Bertschinger & Edwin F. Taylor *

The non-spinning black hole is like the spinning black hole,19

but with its gate to other Universes closed. For the spinning20

black hole, the gate is ajar.21

—Luc Longtin22

21.1 ESCAPE FROM THE BLACK HOLE23

Exit our Universe; appear in a “remote” Universe!24

Chapters 18 through 20 examined orbits of stones and light around the25

spinning black hole. We study orbits to answer the question, “Where do we go26

near the spinning black hole?” The present chapter shifts from orbits to27

topology—the connectedness of spacetime. Topology answers the question,Travel to another
Universe . . .

28

“Where can we go near the spinning black hole?” Astonishing result: We can29

travel from our Universe to other Universes. These other Universes are30

“remote” from ours in the sense that from them we can no longer31

communicate with an observer in our original Universe, nor can an observer in32

our original Universe communicate with us. Worse: Once we leave our. . . on a
one-way ticket!

33

Universe, we cannot return to it. Sigh!34

Figure 1 previews this chapter by examining the r-motion of a free-fall35

stone—or observer—in the effective potential of the spinning black hole. Free36

stones with different map energies have different fates as they approach the37

spinning black hole from far away. Two stones with map energies (E/m)2 and38

(E/m)3, for example, enter unstable circular orbits. In contrast, the stone withBegin with
effective potential.

39

map energy (E/m)4 reaches a turning point where its map energy equals the40

effective potential, then it reflects outward again into distant flat spacetime.41

Question: What happens to a stone with map energy (E/m)1? Two question42

marks label its intersection with the forbidden region inside the Cauchy43

horizon. Does the stone reflect from this forbidden region? Does it move44

outward again through the Cauchy and event horizons? Does it emerge into45

our Universe? into some other Universe? The present chapter marshalls46

general relativity to answer these questions.47

*Draft of Second Edition of Exploring Black Holes: Introduction to General Relativity

Copyright c© 2017 Edmund Bertschinger, Edwin F. Taylor, & John Archibald Wheeler. All
rights reserved. This draft may be duplicated for personal and class use.
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FIGURE 1 Effective potential for a stone with L/(mM) = 5 near a spinning black
hole with a/M = (3/4)1/2. What happens at the intersection of the horizontal line
(E/m)1 with the forbidden region inside the Cauchy horizon? (Adapted from Figure
5 in Section 18.4.)

The idea of traveling from our Universe to another Universe is not new. In48

1964 Roger Penrose devised, and in 1966 Brandon Carter improved, what we49

now call the Carter-Penrose diagram for spacetime, a navigational tool forCarter-Penrose
diagram

50

finding one’s way across Universes. This diagram will be the subject of the51

following sections.52

21.2 THE CARTER-PENROSE DIAGRAM FOR FLAT SPACETIME53

Begin around the edges, then fill in.54

As usual, we develop our skills gradually, first with flat spacetime, then withGlobal metric
flat spacetime

55

the non-spinning black hole, and finally with the spinning black hole. Here is a56

global metric on an [x, t] slice in flat spacetime:57

dτ2 = dt2 − dx2 (global metric, flat spacetime) (1)

−∞ < t <∞, −∞ < x <∞ (2)

The following transformation from [t, x] to [v, u] corrals the infinities in (2)58

onto a single flat page:59
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FIGURE 2 Points and lines on the boundaries in the Carter-Penrose diagram for
flat spacetime.

t =
1

2
[tan(u+ v)− tan(u− v)] (global coordinates, flat spacetime) (3)

x =
1

2
[tan(u+ v) + tan(u− v)] (4)

−π/2 < v < +π/2, −π/2 < u < +π/2 (5)

60

QUERY 1. Coordinate ranges61

Show that transformations (3) and (4) convert the coordinate ranges of t and x in (2) into the62

coordinate ranges of v and u in (5). In other words, the Carter-Penrose diagram brings map coordinate63

infinities onto a finite diagram.64

65

Figure 2 shows the result of this transformation, which we call the66

Carter-Penrose diagram. It plots positive infinite t at point A, negativeCarter-Penrose
diagram

67

infinite t at point C, distant positive x at point B, and distant negative x at68
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Light 

x = constant 
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t = constant 

FLAT
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FIGURE 3 The Carter-Penrose diagram that fills in coordinates of Figure 2 on the
[x, t] slice of flat spacetime. These curves plot v vs. u from the inverse of equations
(3) through (5). These particular conformal coordinates preserve the ±45o angles for
worldlines of light.

point D. In Query 2 you use equations (3) through (5) to verify map69

coordinate values in this figure.70

71

QUERY 2. Points and boundaries in the Carter-Penrose diagram72

Use equations (3) and (4) to verify the following statements about points A through D and boundaries73

a through d in Figure 2:74

A. Show that when u = 0 then x = 0, and when v = 0 then t = 0.75

B. Verify the boxed values of t and x at points A through D.76

C. Verify the values of v + u along the two lines labeled a and c.77

D. Verify the values of v − u along the two lines labeled b and d..78

E. Verify the values of t+ x along the two lines labeled a and c.79

F. Verify the values of t− x along the two lines labeled b and d.80

81

The Carter-Penrose diagram is a conformal diagram that brings global82

coordinate infinities onto the page. A conformal diagram is simply an ordinary83

spacetime diagram for a metric on which we have performed a particularly84
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clever coordinate transformation. This particular coordinate transformationConformal diagram 85

preserves the causal structure of spacetime defined by the light cone.86

To find the global metric on the [u, v] slice for flat spacetime, take87

differentials of (3) and (4) and rearrange the results:88

dx =
1

2

[
du+ dv

cos2(u+ v)
+

du− dv
cos2(u− v)

]
(6)

dt =
1

2

[
du+ dv

cos2(u+ v)
− du− dv

cos2(u− v)

]
(7)

−π/2 < v < +π/2, −π/2 < u < +π/2 (8)

Substitute dx and dt from (6) and (7) into global metric (1) and collect terms.Global metric in
u, v coordinates

89

Considerable manipulation leads to the global metric on the [u, v] slice:90

dτ2 =
dv2 − du2

cos2(u+ v) cos2(u− v)
(9)

−π/2 < v < +π/2 − π/2 < u < +π/2 (10)

Equation (9) has the same form as equation (1) except it is multiplied by91

[cos2(u+ v) cos2(u− v)]−1, called the conformal factor. Indeed, equations92

(9) and (10) are examples of a conformal transformation:93

DEFINITION 1. Conformal transformation94

95 A conformal transformation has two properties:Definiton: Conformal
transformation

96

• It transforms global coordinates.97

• The new global metric that results has the same form as the old98

global metric, multiplied by the conformal factor.99

The transformation (3) through (5) has both of these properties. InConformal factor 100

particular, the resulting metric (9) has the same form (a simple difference101

of squares) as (1), multiplied by the conformal factor102

[cos2(u+ v) cos2(u− v)]−1.103

Infinities on the [x, t] slice correspond to finite (non-infinite) values on the104

[u, v] slice, due to the conformal factor in (9), which goes to x+ t = ±∞ or105

x− t = ±∞ when u+ v = ±π/2 or u− v = ±π/2, as shown around the106

boundaries of Figure 2.107

For the motion of light, set dτ = 0 in (9). Then the numerator108

dv2 − du2 = 0 on the right side ensures that dv = ±du, so the worldline of109

light remains at ±45◦ on the [u, v] slice. Therefore a light cone on the [u, v]Worldlines of
light at ±45◦

110

slice has the same orientation as on the [x, t] slice. We deliberately choose111

conformal coordinates to make this the case.112
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113

QUERY 3. Standing still; limits on worldlines114

A. Show that when dx = 0 in (6), then du = −du, which means that du = 0. Result: The stone with115

a vertical worldline on the [x, t] slice has a vertical worldline on the [u, v] slice.116

B. Show that in Figure 2 the worldline of every stone lies inside the light cone ±45◦.117

118

119

QUERY 4. You cannot “reach infinity.”120

Show that as x→ ±∞ the global equation of motion dx/dt for a stone takes the form dx/dt→ ±0.121

Therefore a stone cannot reach that limit, any more than it (or you!) can reach infinity.122

123

Objection 1. Are these predictions real? They sound like science fiction to124

me!125

We do not use the word “real” in this book; see the Glossary. These126

predictions can in principle be validated by future observations carried out127

by our distant descendents. In that sense they are scientific. They also128

satisfy Wheeler’s radical conservativism: “Follow what the equations tell129

us, no matter how strange the results, then develop a new intuition.”130

21.3 TOPOLOGY OF THE NON-SPINNING BLACK HOLE131

The one-way worldline132

We move on from flat spacetime to spacetime around the non-spinning black133

hole. Equations (17) and (18) of Section 8.4 connect the global r-motion of a134

stone to the effective potential VL(r):135 (
dr

dτ

)2

=

(
E

m

)2

−
(
VL(r)

m

)2

(11)

Because all terms in this equation are squared, the effective potential VL(r)A remote Universe 136

and the map energy E/m can be either positive or negative, as shown in137

Figure 4. our Universe lies above the forbidden region. Below the forbidden138

region lies a second, “remote” Universe.139

What does ”forbidden” mean? Equation (11) tells us that global r-motion140

dr/dτ becomes imaginary when (E/m)2 is smaller than (VL/m)2. In otherMeaning of
“forbidden”

141

words, neither stone nor observer can exist inside the forbidden region.142

The forbidden region prevents the direct passage from our Universe to this143

remote Universe. To do so we would have to move inward through the event144

horizon with positive map energy, then use rocket blasts to re-emerge below145
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FIGURE 4 Effective potential for the non-spinning black hole, copy of Figure 5 of
Section 8.4.

the forbidden region with negative map energy. But inside the event horizonDoor to remote
Universe is closed.

146

motion to smaller r is inevitable. Result: For the non-spinning black hole the147

door to to the remote Universe is closed.148

Figure 5 displays the double-ended funnel-topology of the non-spinning149

black hole. The upper and lower flat surfaces represent flat spacetime in our150

Universe and in the remote Universe, respectively. The pinched connection in151

FIGURE 5 Topology of the non-spinning black hole that supplements Figure 4.
The upper flat surface represents our Universe. It is connected to a remote Universe
(lower flay surface) by the impassable Einstein-Rosen bridge.
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FIGURE 6 Carter-Penrose diagram for the non-spinning black hole, which has two
event horizons. Heavy dashed lines enclose spacetime spanned by the Schwarzschild
Metric, which has access to only one of these event horizons. From our Universe a
stone, light flash, or observer cannot reach the “Remote” Universe in Figures 6 and 1
by crossing the second event horizon.

the center, called the Einstein-Rosen Bridge, is too narrow for a stone orEinstein-Rosen
bridge unpassable

152

light flash to pass between the two Universes.153

Now turn attention to the Carter-Penrose diagram for the non-spinning154

black hole, displayed in Figure 6. This two-dimensional diagram suppresses the155

φ-coordinate, leaving t and r global coordinates. The Schwarzschild metric,156

equation (5) in Section 3.1, becomes:157

dτ2 =

(
1− 2M

r

)
dt2 −

(
1− 2M

r

)−1

dr2 (12)

−∞ < t < +∞, 0 < r <∞ (13)

In this Carter-Penrose diagram an inward-moving stone or light flash158

crosses the event horizon, then moves inevitably to the singularity represented159

by the spacelike horizontal line. Topologically there is a second event horizonTwo event horizons 160

that is not available to this stone or light flash, because their worldlines are161

corralled within the upward-opening light cones.162

21.4 TOPOLOGY OF THE SPINNING BLACK HOLE163

No two-way worldline!164

Figure 1 displays the effective potential for a stone with map angular165

momentum L/(mM) = 5 near the spinning black hole with a/M = (3/4)1/2.166

The striking new feature of this effective potential is the added forbiddenReflect outward
from inside
Cauchy horizon?

167

region inside the Cauchy horizon. This added forbidden region raises the168
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FIGURE 7 Carter-Penrose diagram of the spinning black hole that answers
questions posed in the caption to Figure 1. The heavy dashed line shows the boundaries
of Doran global coordinates, which enclose one event horizon and one Cauchy horizon.
With calibrated rocket blasts, you can choose to enter either the Other Universe or
Another Universe at the top of the diagram. The upward orientation of your worldline
shows that you cannot return to our Universe once you leave it—according to general
relativity.

possibility that the stone with, say, (E/m)1 = 5.1 can reflect from this169

forbidden region and move back outward into a distant region of flat spacetime.170

Figures 7 and 8 present the topology of such a spinning black hole. You,171

the observer who travels along the worldline in Figure 7, start in our Universe,Worldline moves
between Universes.

172

pass inward through the event horizon and the Cauchy horizon, reflect from173

the forbidden region inside the Cauchy horizon, and emerge from a second174

Cauchy horizon. Then, with the use of rockets, you can choose which event175

horizon to cross into one of two alternative Universes at the top of this176

diagram.177
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FIGURE 8 Topology of spacetime around the spinning black hole. In this case the
central Einstein-Rosen bridge is wide enough for a traveler to pass through on her one-
way trip to another Universe. Indeed, she may use rocket thrusts to choose between
two alternative Universes. This figure supplements Figures 1 and 7.

To construct Figure 7 suppress the Φ-coordinate of the Doran metric,178

equation (4) in Section 17.2. The result:179

dτ2 = dT 2 −

[(
r2

r2 + a2

)1/2

dr +

(
2M

r

)1/2

dT

]2
(Doran, dΦ = 0) (14)

− ∞ < T <∞, 0 < r <∞

Objection 2. Why are the lines labeled “singularity” in Figure 7 vertical,180

while the line labeled “singularity” in Figure 6 is horizontal?181

These diagrams show topology: where you can go, and where you cannot182

go. Categories “vertical” and “horizontal” in such a diagram carry no183

prediction for observation. Each case shows that you cannot climb out of184

the singularity.185

The heavy dashed line in Figure 7 outlines the spacetime region included186

in Doran global coordinates. Notice that this included region is only part of187

available spacetime. Compare the worldline in Figure 7 with the horizontalEmerge into
another Universe

188
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line (E/m)1 in Figure 1. This comparison shows that the reflected observer189

does not re-emerges into our Universe, but into one of the alternative190

Universes at the top of Figure 7. Conclusion: For the spinning black hole, the191

gate between alternative Universes is ajar (initial quote of this chapter). But192

your worldline in Figure 7 moves relentless upward; you cannot return to the193

Universe you have left. You can’t go home again!194

Objection 3. How can I tell that I have reached the limits of a map, but not195

the limits of spacetime, when there is uncharted territory ahead.196

If you reach the boundary of a global coordinate system in finite wristwatch197

time (so that dT/dτ →∞) or some other singularity arises, and if you198

have not reached a singularity, then you have just demonstrated that the199

original coordinates are incomplete and need to be extended. This limited200

feature of global coordinates is called geodesic incompleteness: ThereGeodesic
incompleteness

201

exist (portions of) geodesics (or other curves) that reach the edge of your202

coordinate range and continue beyond your present global203

coordinates—unless you introduce new global coordinates that cover the204

new range.205

Objection 4. How many different Universes are there?206

In principle the Carter-Penrose diagram of Figure 7 extends indefinitely207

both upward and downward, embracing an unlimited number of Universes.208

Figure 8 displays the topology through which you pass along the worldline209

of Figure 7. You enter the funnel from Our Universe, then use rockets toTriple funnel for
spinning black hole

210

choose the Universe into which you emerge. Your worldline in Figure 7 shows211

that you cannot re-enter that funnel in order to return to our Universe. Your212

trip between Universes is a one-way street!213

Objection 5. So WHERE are these other Universes? Show them to me!214

Spacetimes multiply inside the event horizon of the spinning black hole.215

What does this mean for regions far from the spinning black hole? Big216

surprise: An observer can use rockets to maneuver inside the event217

horizon of the spinning black hole in order to choose the remote Universe218

into which she emerges. Example: Figure 7 shows that the “bouncing”219

traveler with (E/m)1 in Figure 1 can emerge into either one of two220

alternative Universes shown in Figure 8. Conclusion: Neither of these221

alternative Universes “exist” in our Universe in the everyday sense—but222

you can travel there!223
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21.5 EXERCISES224

SUGGESTED EXERCISES, PLEASE!225
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