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C H A P T E R

9 Orbiting the Black Hole21

Edmund Bertschinger & Edwin F. Taylor *

I want to know how God created this world. I am not interested22

in this or that phenomenon, in the spectrum of this or that23

element. I want to know his thoughts. The rest are details.24

*******25

What really interests me is whether God could have created26

the world any differently; in other words, whether the27

requirement of logical simplicity admits a margin of freedom.28

—Albert Einstein29

9.1 OBSERVE THE BLACK HOLE FROM A SEQUENCE OF CIRCULAR ORBITS30

The sequence of orbits in our exploration plan31

Chapter 8 introduced circular orbits of a free stone around a black hole. The32

present chapter describes how the captain of an approaching spaceship canObserve the
black hole from
circular orbits.

33

insert it into a circular orbit, then transfer to progressively smaller circular34

orbits in order to get closer looks at the black hole. Our exploration program35

includes several maneuvers:36

EXPLORATION PROGRAM FOR THE BLACK HOLE37

Step 1. Insert the approaching spaceship into a stable circular orbit at38

r = 20M .39

Step 2. Transfer a probe from this initial orbit to the innermost stable circularExploration program 40

orbit at rISCO = 6M .41

Step 3. Transfer the probe from the ISCO to an unstable circular orbit at42

r = 4M .43

Step 4. Tip the probe off the unstable circular orbit at r = 4M so that it44

spirals inward across the event horizon.45

*Draft of Second Edition of Exploring Black Holes: Introduction to General Relativity
Copyright c© 2017 Edmund Bertschinger, Edwin F. Taylor, & John Archibald Wheeler. All
rights reserved. This draft may be duplicated for personal and class use.
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To describe this sequence of orbits, use equations from previous chapters,46

summarized here in global rain coordinates, T, r, φ. Both the unpowered47

spaceship and the unpowered probe move in the same way as a free stone.48

GENERAL FREE MOTION OF UNPOWERED SPACESHIP OR PROBEFree motion 49

E

m
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1− 2M

r

)
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dτ
−
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)1/2
dr
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CIRCULAR-ORBIT MOTION OF UNPOWERED SPACESHIP OR PROBE (r > 3M )Motion in a
circular orbit
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m
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v2
shell =

M

r − 2M
(circle: (31) in Sec. 8.5) (10)

Figure 1 previews some kinds of orbits we discuss in this chapter.51

9.2 INSERT THE APPROACHING SPACESHIP INTO A CIRCULAR ORBIT52

Approach from far away and enter a circular orbit.53

How does the captain insert her approaching spaceship into an initial circularInsert into a
circular orbit.

54

orbit from which to observe the black hole? Here’s one possible method: While55

still far from the black hole, the captain uses speed- and direction-changing56
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2 Precessing
orbit results
from extra
"dwell time"
at inner part
of orbit

FIGURE 1 Preview: Some kinds of orbits discussed in this chapter, shown here for a
single value of map angular momentum L/m but several different values of map energy E/m.
A glance at the central plot allows us to make quick predictions about the motion of a stone that
orbits or is captured by a black hole. Four different energies numbered on this plot correspond
to orbits that appear in the four outer corners of the figure. Adapted from Misner, Thorne, and
Wheeler.

rocket thrusts to put the spaceship into a free-fall insertion orbit whose57

minimum r-value matches that of the desired circular orbit (Figure 2). At that58

minimum, when the spaceship moves tangentially for an instant, the captain59

fires a rocket to slow down the spaceship to the tangential speed of the stable60

circular orbit at that r.61

With what values of map E/m and L/m will an unpowered spaceshipInsertion orbit 62

approaching from far away end up moving tangentially for an instant at the63

desired r-coordinate? To find out, substitute (5) into (4), set dr/dτ = 0, and64

solve the resulting equation for L/m:65
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r = 64M
r = 32M

  r = 20M

FIGURE 2 Insertion orbit for unpowered spaceship that approaches from far away. At the
instant of tangential motion at r = 20M , the spaceship fires a tangential rocket thrust to reduce
the locally-measured shell velocity to that for a circular orbit (Figure 3).

L

m
= ±r

[
(E/m)2

1− (2M/r)
− 1

]1/2

(tangential motion) (11)

66

The ± sign in (11) distinguishes between two possible directions of motion at67

the r-value in equation (11). We choose positive angular momentum—that is,68

in the counterclockwise direction of increasing φ. Equation (11) is valid when69

dr/dτ = 0, including turning points of all orbits as well as everywhere along a70

circular orbit.71

The captain chooses her circular orbit at r = 20M . While still far from theChoose circular
orbit at r = 20M .

72

black hole, she maneuvers the incoming spaceship to move with73

arbitrarily-chosen map energy E/m = 1.001 and the positive value of L/m that74

results from equation (11)—both entered in Table 1. Then she turns off the75

rockets and lets the spaceship coast. Figure 2 shows the resulting orbit, which76

corresponds to the incoming horizontal arrow at E/m = 1.001 in Figure 3.77

DEFINITION 1. Subscripts in Table 178

Here are definitions of the subscripts in the left-hand column of Table 1.Definitions:
Subscripts
in Table 1

79

All definitions describe the motion of a free stone or unpowered80

spaceship or unpowered probe.81

insert: for free motion from far away to instantaneous tangential motion at r82

circle: for free motion in a circular orbit at r83

transfer: for free motion that is instantaneously tangential at both values of r84

shell: for values measured in the local inertial frame at r85
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TABLE 9.1 Numerical values at r = 20M and rISCO = 6M

Values of r = 20M rISCO = 6M

(L/m)insert 6.733 036 31M ———
(E/m)insert 1.001 ———
vx,shell,insert 0.319 056 897 ———

(L/m)circle 4.850 712 50M 3.464 101 62M
(E/m)circle 0.976 187 060 0.942 809 042
vx,shell,circle 0.235 702 260 0.5

(L/m)transfer 3.787 166 42M 3.787 166 42M

(E/m)transfer 0.965 541 773 0.965 541 773
vx,shell,transfer 0.186 052 102 0.266 880 257

NOTE: All shell velocities in this table are tangential, in the positive shell x-direction.

Comment 1. Significant digits86

In this chapter we analyze several unstable (knife-edge) circular orbits.87

Interactive software, such as GRorbits, requires accurate inputs to display theLong numbers
in tables

88

orbit of an unpowered probe that stays in an unstable circular orbit for more than89

one revolution. To avoid clutter, we put numbers with many significant digits into90

tables.91

Comment 2. Long subscripts92

In Table 1 the symbols vx,shell,insert, vx,shell,circle, and vx,shell,transfer have long,93

ungainly subscripts. We need long subscripts to fully describe these velocity94

components: that they are x-components measured in a local shell frame and95

whether they describe insertion speed into a circular orbit, speed in that circular96

orbit, or transfer between circular orbits.97

Comment 3. Impulse rocket thrusts98

We assume that each change in vehicle speed results from a quick rocket thrust,99

an impulse. In practice there is no hurry; some efficient rocket engines provideImpulse
rocket thrusts

100

low thrust, which carries the vehicle through a series of intermediate orbits. To101

analyze the outcome of a slow burn complicates calculations and does not add102

to our understanding. So our vehicles use quick rocket thrusts to transfer from103

one orbit to another.104

Comment 4. Which direction is the “rocket thrust”?105

What is the meaning of the phrase outward rocket thrust? The rocket fires in one106

direction; the probe or spaceship that carries the rocket changes speed in the107

opposite direction. We define outward rocket thrust to mean that the rocket burn108

tends to move the rocket to larger r. Similarly, the inward rocket thrust tends to109

move the rocket to smaller r.110

When the spaceship moves tangentially for an instant at r = 20M , the111

spaceship fires a tangential rocket thrust to put it into the stable circular orbitInsert into
circular orbit

112

at that r. What change in tangential velocity must this rocket thrust provide?113

Tangential velocity in which frame? Our policy: make every measurement in a114

local inertial frame; for that purpose, choose the local shell frame. Box 2 in115

Section 7.4 gives shell frame coordinates from which we derive shell116

components of velocity. For reasons that will become apparent, we start with117
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Tangential
       rocket 
   thrust #1

E/m = 1.001

VL(r)/m

1512.5 20 25 30 35 r/M

1.00

1.01
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0.97

0.99

0.98 VL(r)/m

VL(r)/m

L/(mM) = 4.850

L/(mM) = 6.733

E/m = 
0.9762

FIGURE 3 At the instant when the incoming spaceship moves tangentially at the radial
turning point r = 20M (Figure 2), it fires tangential rocket thrust #1 that changes its map
energy and map angular momentum to insert it into a stable circular orbit.

definitions of dtshell/dτ , dyshell/dτ , and dxshell/dτ , each with wristwatch time118

differential dτ in the denominator.119

dtshell

dτ
= lim

∆τ→0

∆tshell

∆τ
(12)

=

(
1− 2M

r

)−1/2
[(

1− 2M

r

)
dT

dτ
−
(

2M

r

)1/2
dr

dτ

]
(13)

=

(
1− 2M

r

)−1/2
E

m
(14)

The last step uses equation (1). Similarly:120

dyshell

dτ
= lim

∆τ→0

∆yshell

∆τ
=

(
1− 2M

r

)−1/2
dr

dτ
(15)

To find an expression for dr/dτ in this equation, combine equations (4) and121

(5):122

dr

dτ
= ±

[(
E

m

)2

−
(

1− 2M

r

)(
1 +

L2

m2r2

)]1/2

(16)

And finally:123

dxshell

dτ
= lim

∆τ→0

∆xshell

∆τ
= r

dφ

dτ
=

L

mr
(17)

The last step uses equation (2). To complete the derivation of shell velocityShell velocity
components

124

components, note, for example, that vy,shell = (dyshell/dτ)(dτ/dtshell), so from125

(15) and (14):126
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vy,shell =
dr/dτ

E/m
= ±

[
1−

(
E

m

)−2(
1− 2M

r

)(
1 +

L2

m2r2

)]1/2

(18)

vx,shell =

(
1− 2M

r

)1/2
L

rE
(19)

127

Use the first two entries in Table 1 plus equation (19) to calculate the128

value of vx,shell,insert at r = 20M (where the shell y-component129

vy,shell,insert = 0) and check the result in the third line of Table 1.130

131

QUERY 1. Tangential shell velocity in a circular orbit132

A. What is the tangential shell velocity of the spaceship in the circular orbit at r? Combine133

equations (6) and (8) to find an expression for L/E and substitute the result into (19):134

vshell,circle =

(
M

r

)1/2(
1− 2M

r

)−1/2

(circular orbit, r > 3M) (20)

135

B. Show that your derivation is not valid unless r > 3M .136

C. Use (20) to calculate a value for vshell,circle at r = 20M . Check your answer with the entry in137

Table 1. 138

139

Table 1 tells us that the shell frame velocity vx,shell,insert of the spaceship140

in its insertion orbit is greater than its shell frame velocity vx,shell,circle in the141

circular orbit. Therefore a rocket thrust must bring the spaceship’s shell142

velocity down to that of the circular orbit.143

Einstein shouts, “Look out! To calculate the needed change in spaceshipUse velocity
addition laws.

144

velocity to be provided by the rocket thrust, you do not use the difference145

between vx,shell,insert and vx,shell,circle.” Why not? Because in special relativity146

(which rules in every local inertial frame), velocities do not simply add or147

subtract.148

In what local inertial frame can we measure directly the change in velocity149

provided by the rocket thrust? That would be the local inertial frame in which150

the spaceship is initially at rest just before the thrust. Just before the rocket151

thrust, the spaceship moves at velocity vx,shell,insert in the shell frame. We call152

the local inertial frame in which the spaceship is at rest the instantaneous153

initial rest frame or IIRF.154

DEFINITION 2. Instantaneous Initial Rest Frame (IIRF)155

The instantaneous initial rest frame (IIRF) is the local inertial frame inDefinition:
Instanteous Initial
Rest Frame (IIRF)

156

which a rocket is at rest just before it fires a rocket thrust to change its157

velocity with respect to that frame. We use the subscript IIRF to indicate158
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TABLE 9.2 Rocket Thrusts in Instantaneous Initial Rest Frames (IIRF)

Thrust at r = ∆vIIRF component Description

#1 20M ∆vx,IIRF1 = −0.090 132 846 2 into circular orbit
#2 20M ∆vx,IIRF2 = −0.051 927 321 7 into transfer orbit
#3 6M ∆vx,IIRF3 = −0.269 017 469 into ISCO
#4 6M ∆vx,IIRF4 = 0.060 908 153 8 into transfer orbit
#4 6M ∆vy,IIRF4 = − 0.228 989 795 into transfer orbit

NOTE: After thrust #4, the probe coasts into the unstable circular orbit at r = 4M .

quantities in this rest frame, as in the symbols ∆vx,IIRF and ∆vy,IIRF159

for the change in velocity components in the IIRF frame caused by that160

rocket impulse. We describe four different IIRF thrusts, listed with an161

additional number 1 through 4 added to the subscript (Table 2).162

Special relativity addition of velocities gives us our first, tangential, IIRF163

rocket-thrust change ∆vx,IIRF1 with the number 1 added to the subscript. This164

rocket thrust must reduce the shell speed of the spaceship. From equation (54)IIRF1 transfer
velocity change

165

of Section 1.13,166

∆vx,IIRF1 =
vx,shell,circle − vx,shell,insert

1− vx,shell,insertvx,shell,circle
(21)

= −0.090 132 846 2 (into circular orbit at r = 20M)

Put this numerical value into Table 2. This rocket-thrust velocity change (−27167

021 kilometers/second) inserts the incoming spaceship into the circular orbit168

at r = 20M .169

Objection 1. Wait! The two velocities, vx,shell,circle and vx,shell,insert are170

measured in the same local inertial shell frame. The difference in171

x-components is the measured difference in x-components; why confuse172

things with complicated equation (21)?173

Remember in special relativity the law of addition of velocities between two174

inertial frames in relative motion (Part A of Exercise 17 , Section 1.13)?175

Equation (21) could be called the law of subtraction of velocities—Part B of176

that earlier exercise. The complication of equation (21) does not require177

general relativity.178

Objection 2. Wow, that is quite a long vertical line in Figure 3. How fast179

does the probe move along that line? That quick transition must violate the180

light-speed limit!181

No, the probe does not change any global coordinate, T , r, or φ, as it182

traverses the (idealized) vertical line. That transition results from a rocket183

thrust; it simply changes L and E almost instantaneously (Comment 3).184



March 31, 2020 10:16 Orbiting200331v1 Sheet number 10 Page number 9-9 AW Physics Macros

Section 9.3 Transfer to the ISCO 9-9

FIGURE 4 Transfer orbit in which the unpowered probe coasts from tangential motion at
rA = 20M to tangential motion at rISCO = 6M . Figure 5 shows the effective potential for this
transfer and change in tangential speed required to put the probe into this transfer orbit.

Objection 3. Your analysis of insertion into a circular orbit takes no185

account of mass loss due to required rocket thrusts. Whenever spaceship186

mass changes, its map energy and map angular momentum also change.187

Right you are. However, constants of motion in our equations are map188

energy and map angular momentum per unit mass. Map energy E/m and189

map angular momentum L/(mM) are unitless. Therefore the initial mass190

of the spaceship (before a rocket thrust) and the final spaceship mass191

(after the rocket thrust) do not affect these equations.192

9.3 TRANSFER TO THE ISCO193

Get closer194

The spaceship completes observations from the stable circular orbit at195

r = 20M and its captain wants to make further observations from a smaller196

circular orbit—still outside the event horizon. To take the entire spaceship to197

this smaller orbit requires a large amount of rocket fuel; instead the captain198

launches a small probe toward the smaller orbit.199

What r-value shall we choose for the inner circular orbit? Be bold! Take200

the probe all the way down to the so-called Innermost Stable Circular Orbit atTransfer to circular
orbit at rISCO = 6M .

201

rISCO = 6M (Definition 6, Section 8.5).202
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r/M

VL/m

0.95

1.05

1.15

0.9

1.1

1

2.5 10 15 25 3050

L/(mM) =
  4.8507

L/(mM) = 
3.4641

Transfer orbit, E/m = 0.9655

L/(mM) =
 3.7872

Tangential
rocket
thrust #3

Tangential
rocket
thrust #2

Stable
  orbit

=
rB = 6 M

rISCO  M rA = 20
 M

FIGURE 5 Transfer orbit between sequential tangential rocket thrusts #2 and #3. This
maneuver moves the probe from the stable circular orbit at r = 20M to the half-stable ISCO at
rISCO = 6M . Figure 4 plots this transfer orbit on the [r, φ] slice.

Comment 5. ISCO as a limiting case203

The ISCO is hazardous because it’s “half stable” and may lead to a death spiral204

inward through the event horizon. To prevent this, the inner circular orbit r-value205

should be slightly greater than rISCO to make it fully stable. In what follows we206

ignore this necessary small r-adjustment.207

Figure 4 shows a transfer orbit, tangential at both rA = 20M and208

rB = rISCO = 6M . Recall that these radii are called radial turning points,209

because at both r-values dr/dτ = 0, so the orbiter instantaneously sweeps210

around only tangentially. Figure 5 displays the corresponding map energy on211

the effective potential plot.212

213

QUERY 2. Profile of transfer orbit214

In 1925 Walter Hohmann described a transfer orbit between two planetary orbits around our Sun as215

“half an ellipse.” Half an ellipse would have maxima of rA and rB on opposite sides of the center of216

attraction. The orbit plot in Figure 4 does not look like half an ellipse. Why is this different from217

Hohmann’s prediction?218



March 31, 2020 10:16 Orbiting200331v1 Sheet number 12 Page number 9-11 AW Physics Macros

Section 9.3 Transfer to the ISCO 9-11

219

We seek a transfer orbit between the specified Above circular orbit at220

rA/M and the Below circular orbit at rB/M ; Figure 5 shows this transfer. In221

equation (4), dr/dτ = 0 at the two turning points rA/M and rB/M , which222

yields:223 (
E

m

)2

=

(
VL(rA)

m

)2

=

(
VL(rB)

m

)2

(at turning points) (22)

Look first at the right equality in (22), in which the square of the effective224

potential (5) has the same value at two different r. Write down this equality225

and solve the resulting equation for (L/m)2. The result is equation (23). NextTransfer orbit
map L and E

226

look at the left equality in (22), in which the square of the map energy227

(E/m)2 is equal to the square of the effective potential at either r. Write down228

this equality and solve the resulting equation for (E/m)2. The result is229

equation (24).230

(
L

m

)2

transfer

=
2Mr2

Ar
2
B(rA − rB)

r3
A(rB − 2M)− r3

B(rA − 2M)
(between circular orbits) (23)

(
E

m

)2

transfer

=
(rA − 2M)(rB − 2M)(r2

A − r2
B)

r3
A(rB − 2M)− r3

B(rA − 2M)
(between circular orbits)(24)

231

232

QUERY 3. Transfer either way233

Show that equations (23) and (24) are both symmetrical in rA and rB. In other words, show that the234

same values of (L/m)transfer and (E/m)transfer apply, irrespective of the direction of transfer between235

the circular orbits. Is this result obvious?236

237

Substitute values rA = 20M and rB = rISCO = 6M into equations (23) and238

(24); enter resulting values of L/m and E/m into Table 1. Then equations (18)239

and (20) give us values of vx,shell,transfer and vx,shell,circle. These results allow us240

to compute the rocket thrust needed to put the probe into the transfer orbit.241

This is our second, also tangential, instantaneous initial rest frame IIRF thrust242

(Definition 2) with the number 2 added to the subscript, ∆vx,IIRF2.IIRF2 transfer
velocity change

243

∆vx,IIRF2 =
vx,shell,transfer − vx,shell,circle

1− vx,shell,transfervx,shell,circle
(into transfer orbit (25)

= −0.051 927 321 7 from r = 20M to rISCO)

Enter this numerical result into Table 2. This rocket-thrust velocity change244

(−15 567 kilometers/second) inserts the probe into a transition orbit that245

carries it from tangential motion at r = 20M down to tangential motion at246

rISCO = 6M .247
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Objection 4. You talk about moving into a circular orbit and transferring248

between orbits. But what will our orbiting observers see? You have told us249

nothing about what they see as they look around.250

Guilty as charged! Section 7.7 showed only what a raindrop diver sees251

radially inward and radially outward as she plunges to the center of the252

black hole. Beyond that, we have made no predictions whatsoever about253

what any observer sees. For example: In what local frame direction must254

an observer look to see a particular star? What must we know to make255

such predictions? Chapters 13 answers these questions. The cosmic trip256

planner must read beyond the present chapter!257

When the probe reaches rISCO = 6M , it travels tangentially for an instant258

at shell velocity vx,shell,transfer. Then a third insertion rocket thrust changes259

this shell velocity to vx,shell,circle for the circular orbit at rISCO. Table 1 hasIIRF3 transfer
velocity change

260

values of both of these velocities. What insertion rocket thrust does this? As261

before, it is a tangential thrust in the instantaneous inertial rocket frame IIRF262

(Definition 2), with the number 3 added to the subscript, ∆vx,IIRF3.263

∆vx,IIRF3 =
vx,shell,transfer − vx,shell,circle

1− vx,shell,transfervx,shell,circle
(26)

= −0.269 017 469 (into circular orbit at rISCO = 6M)

Enter the numerical result in Table 2. This rocket-thrust velocity change264

(−86 494 kilometers/second) inserts the probe into the circular orbit at265

rISCO = 6M .266

9.4 TRANSFER TO AN UNSTABLE CIRCULAR ORBIT267

Put the probe at risk!268

Thus far we have inserted our spaceship into a stable circular orbit at269

r = 20M , then transferred a probe down to the half-stable circular orbit at270

rISCO = 6M . Now the spaceship captain wants to make observations evenTransfer to
unstable orbit
at r = 4M

271

closer to the black hole. She decides to transfer the probe from rISCO = 6M to272

the unstable circular orbit at r = 4M , a maneuver shown in Figures 6 and 7.273

274

QUERY 4. Unstable circular orbit at r = 4M275

A. Show that the unstable circular orbit at r = 4M has map angular momentum L/m = 4M .276

B. Show that the unstable circular orbit at r = 4M has map energy E/m = 1.277

C. Make an argument that the transfer orbit from r = 6M to r = 4M in Figures 6 and 7 must have278

the same values of map energy and map angular momentum given in the first two items of this279

Query. 280
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1.15
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rA/M = 6

L/(mM) = 4

L/(mM) = 3.4641

rocket
thrust #4

FIGURE 6 Probe transfer orbit between half-stable orbit at rISCO = 6M and unstable
circular orbit at r = 4M . See Figure 7.

D. Verify the bottom right hand entry in Table 3, namely that at r = 4M ,281

vx,shell,circle = vx,shell,transfer = |vshell,transfer|282

283

Transfer orbits have radial turning points where E/m = VL(r). Usually284

these turning points are not at an extremum of the effective potential, so they285

are not at r-values of circular orbits. In this case, however, we need a rocket286

thrust to create the extremum for a circular orbit at that r-value.287

At a maximum of the effective potential, the turning point occurs at the288

r-value of the circular orbit, so we need no rocket thrust to put the probe intoNo rocket thrust
needed for insertion
into unstable orbit.

289

that circular orbit. Figure 6 shows this special case: The probe moves to290

smaller r along the horizontal arrow in Figure 6. As it does so it reaches the291

effective potential maximum at r = 4M where it automatically enters the292

unstable circular orbit at that r-value. So we need only a single rocket thrust293

at r = 6M to change map energy and map angular momentum to that of the294

circular orbit at r = 4M (Figure 7).295

Objection 5. Once the rocket thrust #4 shoots the probe upward in Figure296

6 to map energy E/m = 1, why should the probe go left in that figure, to297

smaller r? Why doesn’t it go right, to larger r?298
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6.0

FIGURE 7 Transfer orbit from rISCO = 6M to the unstable circular orbit at r = 4M
(Figure 6). This requires a velocity vshell,transfer inward from 90◦ by 19.471 degrees, with shell
velocity components and magnitude given in Table 3.

Figure 7 and Table 3 show the answer: The rocket thrust is not tangential299

but has an inward r-component.300

Query 4 already tells us the map values E/m = 1 and L/m = 4M of the301

leftward horizontal arrow in Figure 6. Because the rocket thrust is not302

tangential, we need to apply the full set of equations (18) and (19) to find theNeed two thrust
components for
transfer orbit

303

shell components of the velocity in the transfer orbit. Enter these results for304

vy,shell,transfer and vx,shell,transfer in Table 3.305

To start this transfer from rISCO we use the fourth rocket thrust measured306

in the instantaneous initial rest frame. This thrust requires two components,307

which we call ∆vx,IIRF4 and ∆vy,IIRF4, with the number 4 added to the308

subscript. In this case we must adapt both velocity addition equations (54) in309

Section 1.13.310

∆vx,IIRF4 =
vx,shell,transfer − vx,shell,circle

1− vx,shell,circlevx,shell,transfer
(into the transfer orbit... (27)

∆vy,IIRF4 =
vy,shell,transfer

γx,shell,circle(1− vx,shell,circlevx,shell,transfer)
...from r = 6M (28)

where γx,shell,circle = (1− v2
x,shell,circle)−1/2 ...to r = 4M) (29)

Substitute into these equations from r = rISCO = 6M values in Tables 1311

and 3 and enter the resulting components into Table 2. This rocket thrust,312

which corresponds to the vertical arrow in Figure 6, causes a velocity change313

of magnitude, |∆vIIRF4| = 0.236 951 745 = 71 036 kilometers/second.314
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TABLE 9.3 Numerical values for transfer from rISCO = 6M to r = 4M

Values of rISCO = 6M r = 4M

(L/m)transfer 4M 4M
(E/m)transfer 1 1
vx,shell,transfer 0.544 331 054 0.707 106 781
vy,shell,transfer −0.192 450 090 0
|vshell,transfer| 0.577 350 269 0.707 106 781
θx,shell −19.471 220 6◦ 0

vx,shell,circle 0.500 000 000 0.707 106 781

Our probe coasts to the unstable circular orbit at r = 4M , an effective315

potential peak close to the black hole. After it completes measurements there,316

the captain decides to dispose of the probe. To do this, she commands theGood-bye probe! 317

probe to fire a tiny inward rocket thrust to tip it off the effective potential318

peak and send it spiraling inward across the event horizon. Good job!319

Section 9.5 applies some of what we have learned to analyze Larry Niven’s320

short story “Neutron Star.”321

9.5 “NEUTRON STAR” BY LARRY NIVEN322

Close to a neutron star? Look out!323

Larry Niven’s science fiction short story “Neutron Star” describes the trip by324

spaceship pilot Beowulf Schaeffer to discover why two earlier pilots died whileWhy did earlier
explorers die?

325

orbiting a neutron star. Sponsors of Beowulf’s trip are aliens called326

puppeteers, who manufacture spaceship hulls that are utterly indestructable327

and—so they claim—impenetrable. Naturally, the death of two pilots in an328

“impenetrable” puppeteer spaceship hull has reduced sales. The puppeteers329

want to know what deadly force has managed to enter their high-tech hulls.330

As Beowulf approaches the neutron star, the long axis of his spaceship331

inexorably orients along a radial line to the star (Why?). Beowulf suddenly332

realizes that he must position himself at the point in the spaceship where at333

least one part of his body feels no gravity in order to be in free-fall motionPassage through
closest approach

334

around the neutron star. Here is Niven’s description of his passage through the335

r-coordinate of closest approach:336

My time was up. A red disk leapt up at me; the ship swung337

around me; I gasped and shut my eyes tight. Giants’ hands338

gripped my arms and legs and head, gently but with great“Giants’ hands
gripped . . .”

339

firmness, and tried to pull me in two. In that moment it came340

to me that Peter Laskin had died like this. He’d made the341

same guesses I had, and he’d tried to hide in the access tube.342

But he’d slipped . . . as I was slipping . . . From the control343

room came a multiple shriek of tearing metal. I tried to dig my344

feet into the hard tube walls. Somehow they held.345
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According to Niven’s story, Beowulf is (barely!) able to cling to the point346

of zero local gravity, though the skin on his extremities is injured. After347

returning to base, he reports to the puppeteers that the deaths of earlierClose-call
survival

348

explorers were due to their slipping from this gravity zero point and falling to349

the front (or back) of the spaceship.350

Objection 6. What in (or out of) this world is happening to Beowulf? His351

orbit around the neutron star is similar to those we use to insert our352

spaceship into a circular orbit. Why is Beowulf in danger, and why did353

earlier explorers die?354

“All politics is local,” said politician Tip O’Neill. A monster may lurk at355

opposite ends of your spaceship. In “Neutron Star” the monster is tidal356

acceleration, which can be lethal.357

Tidal acceleration is nothing new for us. Section 7.9 introduced it for the358

radial fall into the black hole, and in the present chapter Section 9.7,359

Appendix: Killer Tides, gives expressions for radial and tangential tidalKiller tides 360

accelerations. This information allows us to answer the question, “Can361

Beowulf Schaffer survive his transit past the neutron star?”362

We need numerical values from “Neutron Star” in order to apply tidal363

acceleration expressions from Section 9.7. Larry Niven tells us that (a) theSurvival? 364

neutron star’s mass is 1.3 times the mass of our Sun, (b) the minimum365

r-coordinate of approach is approximately 10.5 kilometers, so that366

rmin ≈ 5.5M . (The neutron star is also spinning, but too slowly to have a367

significant effect on Beowulf’s global orbit or local safety.)368

369

QUERY 5. Einstein predicts Beowulf Schaeffer’s fate370

Use the parameters in the preceding paragraph to find out whether or not Beowulf Schaeffer survives371

tidal accelerations during his encounter with the neutron star. Assume that the distant speed of372

approach to the neutron star is nonrelativistic, so that E/m ≈ 1.373

A. Use (3) to determine vshell at the closest approach rmin.374

B. By what multiple is the radial tidal effect (in the local spaceship ∆yship direction) larger than375

the Newtonian prediction?376

C. At the moment of closest approach to the neutron star, Beowulf Schaeffer extends his arm one377

meter radially inward. What happens to him next?378

D. Give a definitive answer to the question, “Can Beowulf Schaeffer survive the trip described in379

“Neutron Star”? (When our class sent numerical results to Larry Niven, he replied, “Thank you380

for the calculations. I’m not sure how I will use them, but thanks anyway.”)381

E. If you conclude that Beowulf cannot survive the “Neutron Star” trip, find an r-coordinate of382

closest approach to the neutron star at which Beowulf Schaeffer can survive. State your criteria383

for survival. On the way to this result, give a specific numerical value for ∆g/∆yship that, in384

your estimate, is survivable.385
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386

387

QUERY 6. Blackmail388

Discussion question: Beowulf Schaefer blackmails the secretive puppeteers by threatening to reveal that389

they come from a moonless world. How does he know that?390

391

392

QUERY 7. Optional: Swimming in spacetime?393

A massive mother ship is in a circular orbit with its long dimension tangential with respect to the black394

hole. Astronauts inside extend a mechanical arm radially inward toward the black hole. The “hand” on395

this arm experiences a radially inward force.396

A. Can such a maneuver be used to change the orbit of the mother ship?397

B. Can similar maneuvers provide a method for balancing a spaceship in a circular knife-edge orbit398

without using rockets?399

C. Using repeated “calisthenics,” can a freely-floating astronaut “swim” around the mother ship?400

(See “Swimming in Spacetime” in the references.)401

D. Do such maneuvers violate the laws of conservation of map energy or map angular momentum?402

E. Do similar maneuvers work in flat spacetime?403

404

9.6 A COMFORTABLE CIRCULAR ORBIT405

How close to the black hole?406

Up to this point, our description of circular orbits has a serious flaw: We do407

not answer the question, “What is the minimum r-value of a circular orbit inMeaning of
“comfortable”?

408

which the astronaut will be comfortable?” Our answer to this question has409

three parts:410

• Part I. What are the tidal accelerations in a circular orbit of given411

r-coordinate? To answer this question, we consult Section 9.7, Appendix:412

Killer Tides.413

• Part II. What is the maximum tidal acceleration for which a human is414

comfortable?415

• Part III. What is the minimum r-coordinate of a circular orbit (Part I)416

for which a human is comfortable (Part II)?417

Instead of choosing an orbit that is comfortable for a human, we can418

replace the human with a probe hardened to withstand hundreds or thousands419

of times the tidal accelerations that would injure or kill a person.420
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Part I: Tidal acceleration in circular orbit421

In order to apply tidal equations (46) through (48) to a circular orbit, we need422

the square of the tangential shell velocity in (10).423

Think of an astronaut in a circular orbit with the long axis of his body424

oriented along the radial direction. His height is larger than his width, so we425

carry out our calculations for the radial tidal component only, knowing that426

the other components will be smaller. Half his height provides a value forTidal acceleration
in circular orbit

427

∆ylocal in equation (46). Substitute (10) into (46) and rearrange so the right428

side of the equation contains only expressions in r.429

∆glocal,y ≈
M

r̄3

(
2r̄ − 3M

r̄ − 3M

)
∆ylocal (circular orbit) (30)

Part II: Define human comfort.430

How large a tidal acceleration is comfortable for a human being? The answer431

is different for people of different heights. Here we treat our human astronaut432

gently, using the definition employed in Section 7.9 under the assumption that433

he is oriented along a radial line, with head above feet. Then with his stomach434

in free fall, the astronaut remains comfortable if his head is accelerated upwardTidal acceleration
for human comfort

435

with the acceleration it would experience on Earth—call it gE—and his feet436

are accelerated downward with the same magnitude of Earth acceleration.437

Assume the astronaut is approximately two meters tall, so his measured438

distance between head and stomach is one meter, the same as the separation439

between stomach and feet. Then ∆ylocal = 1 meter in equation (30).440

Part III: Minimum-r circular orbit for human comfort441

The acceleration gE at Earth’s surface has the numerical value442

gE = 1.09× 10−16 meter−1 (inside the front cover). We want to insert gE intoMinimum r
for comfort?

443

(30) when the circling astronaut’s “half height” is ∆ylocal = 1 meter:444

gE = ∆glocal,y ≈
M

r̄3
comfort

(
2r̄comfort − 3M

r̄comfort − 3M

)
× 1 meter (human comfort limit)(31)

gE ≈
M−2

(r̄comfort/M)
3

(
2r̄comfort/M − 3

r̄comfort/M − 3

)
× 1 meter (32)

In this equation, r̄comfort refers to the smallest r-value of the circular orbit in445

which the observer is comfortable. Multiply the left and right sides of (32) by446

M2 and divide by gE. The result is447

M2 ≈ 1

(r̄comfort/M)
3

(
2r̄comfort/M − 3

r̄comfort/M − 3

)
1 meter

gE
(human comfort limit)(33)

We can rearrange (33) to give the mass of the black hole in number of Suns,448

M/MSun, as a function of the minimum r-value, rcomfort, of the circular orbit449

in which a human astronaut will be comfortable:450
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FIGURE 8 The horizontal axis, rcomfort/M , gives the minimum-r circular orbit in which a
human will be comfortable. On the vertical axis, M/MSun is a number equal to the mass of the
black hole in units of the mass of our Sun. Arrows and little filled circles illustrate solutions of
Sample Problems 1A through 1D.

M

MSun
=

1

MSun

(
1 meter

gE

)1/2
[

1

(r̄comfort/M)
3

(
2r̄comfort/M − 3

r̄comfort/M − 3

)]1/2

(34)

= 6.47× 104

[
1

(r̄comfort/M)
3

(
2r̄comfort/M − 3

r̄comfort/M − 3

)]1/2

(35)

(minimum-r circular orbit for human comfort)

451

The last step substitutes values of MSun and gE from inside the front cover.452

Verify that both sides of this equation are unitless. Figure 8 plots the curve of453

this equation. Sample Problems 1 explain the arrows.454
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Sample Problems 1. Minimum-r Circular Orbit for Human Comfort
PROBLEM 1A
What is the numerical value of M/MSun for which
rcomfort/M = 20 is the minimum circular orbit in which a
human feels comfortable? What is the value of rcomfort in
meters?

SOLUTION 1A
Figure 8 shows that at rcomfort/M = 20, M/MSun ≈ 103,
indicated by point A in the figure. The value of rcomfort in
meters is rcomfort = 20×M meters = 20×(M/MSun)×
MSun meters ≈ 20 × 103 × 1.48 × 103 meters ≈ 3 ×
107meters ≈ 3× 104 kilometers.

PROBLEM 1B
I approach the black hole of mass value NSuns = 102. What
is the minimum rcomfort of the circular orbit in which I will feel
comfortable?

SOLUTION 1B
The long horizontal arrow to the right at NSuns = 102 in
Figure 8 crosses the “comfort curve” at rcomfort/M ≈ 93,
indicated by point B in Figure 8.

PROBLEM 1C
I approach the monster black hole in the center of our galaxy,
for which NSuns ≈ 4 × 106. Assume (incorrectly) that this
monster black hole is not spinning. What is the approximate
value of rcomfort for this circular orbit?

SOLUTION 1C
The number M/MSun = 4.1×106 is point C on the curve in
Figure 8. You will be comfortable in an orbit of approximately
rcomfort/M = 3

PROBLEM 1D
The robot satellite released by the spaceship at
rcomfort/M = 20 in Problem 1A is made small and
hardened in various ways to withstand tidal accelerations 104

times as great as that for which a human will be comfortable.
What is the value of rcomfort of the circular orbit in which this
probe will continue to operate?

SOLUTION 1D
Look at equation (34). The black hole remains the same,
so the ratio M/MSun on the left side remains the same.
Therefore the right side must remain the same. When gE in
the denominator on the right side increases by a factor of 104,
then its square root contribution to the right side decreases
by the factor 102. To compensate, the square root of the
square-bracket expression must increase by the factor 102.
The vertical arrow in the figure extends upward by this factor
of 102. The leftward horizontal arrow finds rconf/M , for the
“comfort orbit” of the robot. This rcomfort/M ≈ 3 for the
robot is at almost the minimum r-value for an unstable circular
orbit.

9.7 APPENDIX: KILLER TIDES455

Avoid spaghettification!456

The dangers experienced by Beowulf and other explorers near a neutron star457

should not surprise us. Objects near to one another in curved spacetime canSize of local
inertial frame
limited by tides.

458

experience relative accelerations. Section 1.11 described these “tidal459

accelerations” that limit the size of a local inertial frame. At locations near to460

one another on Earth’s surface, these relative accelerations are too small for us461

to notice in everyday life. In contrast, near a neutron star or a black hole462

relative tidal accelerations at different locations on a single human body can463

injure or kill. We call such different accelerations killer tides.464

In principle, you can derive the following tidal accelerations using only465

basic tools for the motion of a stone: the metric plus the Principle of Maximal466

Aging. This process, however, is an algebraic nightmare, so we simply quote467

results obtained with the use of a more advanced general-relativistic formalism.468

TIDES DURING RADIAL MOTION469

Surprise! For the special cases of an observer either at rest in globalRadial motion:
Newton’s tidal
accelerations
are valid.

470

coordinates near a black hole or moving radially toward or away from it, local471
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tidal effects predicted by general relativity are identical to those predicted by472

Newton. Write Newton’s expression for gravitational acceleration in the473

radially outward or local y-direction due to a point or spherically symmetric474

source. In unitless coordinates:475

gy = −M
r2

(Newton) (36)

Take the differential of this to measure radial tidal effects and write the result476

in the approximate form for local frame measurements:477

∆glocal,y ≈
2M

r̄3
∆r ≈ 2M

r̄3
∆ylocal (Newton) (37)

The final step, equating ∆r to ∆ylocal, makes sense only for Newton; in478

general relativity the relation between global increment ∆r and local frame479

increment ∆ylocal depends on the position and motion of the local frame in480

global coordinates. Nevertheless—surprise again!—the full general relativity481

analysis also yields the last expression in (37). To show this is difficult. The482

following boxed three equations tell us the tidal accelerations in the three483

directions in the inertial frame.484

∆glocal,y ≈
2M

r̄3
∆ylocal (38)

∆glocal,x ≈ −
M

r̄3
∆xlocal (39)

∆glocal,z ≈ −
M

r̄3
∆zlocal (40)

Subscript “local” means any local frame at rest or moving

radially inward or outward in global rain coordinates.
485

A radially-diving observer suffers not only stretching in the radial486

direction, but also compression in tangential directions as her descending bodySpaghettification:
radial stretch plus
tangential
compression

487

funnels into an ever-narrowing local space. Negative signs in (39) and (40)488

reflect this compression. We give the light-hearted name spaghettification to489

the physical result of these combined stretch and compression tidal effects:490

lengthwise extension combined with transverse compression. Sample Problem491

2 carries out a Newtonian analysis of gravity gradients (tides), whose results492

turn out to be identical in form to general relativistic results (38) through (40).493

Expressions (38) through (40) shrink to become calculus expressions (44)494

at a point. Every approximate equation in this section can lead to a similar495

calculus expression. We keep the ∆ notation, however, to remind us that we496

deal here with a local frame of finite extent.497

Now apply equations (38) through (40) to a local inertial frame. A liquid498

drop of nearly incompressible fluid, such as water or mercury, has a surface499

tension that tends to minimize surface area, which makes the droplet spherical500
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Sample Problem 2. Newton’s tidal components
Derive expressions similar to (38) through (40) for Newton’s
case, in the calculus limit.

SOLUTION:
This is one of only two places in this book where we
use vector expressions and partial derivatives. Represent
unit vectors in the x, y, and z directions by x̂, ŷ, and
ẑ, respectively. Use this notation to write (36) as a vector
equation:

g = −
M (xx̂+ yŷ + zẑ)

(x2 + y2 + z2)3/2
(Newton) (41)

Each component of this vector has the algebraic form:

gq = −
Mq

(x2 + y2 + z2)3/2
(42)

where q stands for any coordinate x, y, or z. Take the partial
derivates similar to the general relativistic equations (38)
through (40). You can show that the results also have the
same form for all three components:

∂gq

∂q
= −

M

r3
+

3Mq2

r5
(q → x, y, z) (43)

We want expressions for these partial derivatives at global
coordinate r in flat spacetime. Take y to be along the radial
direction, so at that point y = r, while x = z = 0. Equations
(43) become:

∂gx

∂x
= −

M

r3
(Newton) (44)

∂gy

∂y
= −

M

r3
+

3M

r3
= +

2M

r3

∂gz

∂z
= −

M

r3

Inspection shows that equations (44) have the same form as
equations (38) through (40).

in an inertial frame. Equations (38) through (40) show us that for radialAll radial speeds
give same local
tidal accelerations.

501

motion, the drop will be distorted into the shape of a throat lozenge or smooth502

potato—technical term: prolate spheroid—shown in Figure 9.503

Equations (38) through (40) are valid for all possible radial504

speeds—including rest—for example a local inertial frame launched in any of505

the following ways:506

• Local rain frame: Local inertial frame dropped from rest far away507

(Box 4, Section 7.4).508

• Local hail frame: Local inertial frame hurled radially inward from far509

away with any initial local shell speed.510

• Local drip frame: Local inertial frame dropped from rest at any initial511

r0 > 2M .512

All of these are radially-moving local free-fall frames (Section 2.1). Taken513

together, free-fall frames result in every possible inward or outward radial514

speed of the radially moving frame as measured by a shell observer at anyRadial free-
fall frames

515

given average r̄. General relativity provides results independent of radial speed516

in (38) through (40), but the tools developed in this book are not sufficient to517

explain the reason for this result.518

Notice that equations (38) through (40) satisfy the equation519

∆glocal,y

∆ylocal
+

∆glocal,x

∆xlocal
+

∆glocal,z

∆zlocal
≈ 0 (45)
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FIGURE 9 Schematic diagram of tide-induced shape for an incompressible liquid drop
with surface tension restoring force, observed in a local inertial frame instantaneously at rest or
moving radially with respect to a black hole. From the symmetry of the black hole with respect to
radial motion, it follows that the tidal squeeze is symmetric perpendicular to the radial direction.
Result: the shape is that of an oblong throat lozenge or smooth potato.

This is a general result for tides analyzed by general relativity. In the calculusRelation among
tidal components

520

limit, the approximate equality in (45) becomes mathematically exact, and521

applies to partial derivatives in (44).522

Comment 6. Tides preserve volume.523

In the calculus limit, equation (45) expresses a simple and powerful result: The524

volume of a tiny cloud of free, non-interacting dust particles remains constant as525

tidal accelerations act on the cloud. This central result is valid even for the far526

more complicated tidal accelerations near a spinning black hole (Chapter 19).527

Notice that equations (38) through (40) are continuous across the eventTidal effects are
continuous across
event horizon.

528

horizon at r/M = 2. This result provides additional evidence for our repeated529

claim that an observer falling through the event horizon experiences a steady530

increase in tidal effects but no sudden jar or jolt there. Indeed, from evidence531

internal to her local frame the diver cannot tell when she passes radially532

inward through the event horizon.533

TIDES DURING TANGENTIAL MOTION534

An observer moving in the r, φ plane streaks through a local shell frame in theTangential motion:
tidal accelerations
differ from Newton’s.

535

tangential, or ∆xshell, direction with shell velocity vshell,x. In the following536

equations, only the factor M/r̄3 reminds us of the corresponding Newtonian537

analysis in equation (37). For motion along the tangential ±∆xshell directions:538
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FIGURE 10 Schematic diagram of tide-induced shape for an incompressible liquid drop
with surface tension restoring force, observed in a local inertial frame that moves in either
direction along a ∆xshell tangential line. This figure shows results for high tangential speed
vshell,x: both the tidal stretch in the ∆yshell direction and the tidal squeeze in the ∆zshell
direction are huge, much greater than the tidal squeeze in the ∆xlocal direction. The resulting
shape: a thin ribbon with rounded ends lying in the ∆xshell, ∆yshell plane.

∆glocal,y ≈

(
1 + v2

shell,x/2

1− v2
shell,x

)
2M

r̄3
∆ylocal (46)

∆glocal,x ≈ −
M

r̄3
∆xlocal (47)

∆glocal,z ≈ −

(
1 + 2v2

shell,x

1− v2
shell,x

)
M

r̄3
∆zlocal (48)

Subscript “local” means any local frame moving tangentially

in either direction in global coordinates.
539

Notice that equation (47) is the same as equation (39) for radial motion, while540

the equations for the other two directions simply multiply the radial results by541

coefficients that depend on v2
shell,x. In the low-speed limit (v2

shell,x � 1), theseLimiting cases
for tangential
motion

542

equations also reduce to the radial ones (38) and (40). Finally, note that as543

vshell,x increases toward the speed of light, the y component leads to radical544

stretching, while the z component leads to much greater tangential545

compression than that in the ∆xlocal direction.546

Expressions (46) through (48) also satisfy the general relation (45) among547

the local components of gravity gradient, which preserves the volume of a tiny548

dust cloud moving in the map tangential direction.549

For a local inertial frame, the result is the tidal distortion of a drop of550

water or liquid mercury into a flat ribbon with rounded ends, shown in Figure551



March 31, 2020 10:16 Orbiting200331v1 Sheet number 26 Page number 9-25 AW Physics Macros

Section 9.8 Exercises 9-25

10 for tangential motion. Equations (46) through (48) are correct for any value552

of vshell,x, not just the value of a stone’s local shell speed when it is in a553

circular orbit. For example, a stone that approaches a black hole from far away554

and returns to far away will travel tangentially at its point of closest approach;555

these three equations apply at this point.556

Section 9.3 applies these results to find the minimum-r circular orbit for557

human comfort.558

559

QUERY 8. Departure from Newton’s gravity gradient560

Expressions in parentheses on the right sides of (46) and (48) are a measure of the departure of561

Einstein’s gravity gradients from those predicted by Newton. Temporarily call these expressions562

Einstein multipliers.563

A. For what value of vshell,x does the largest of the Einstein multipliers become “significant,” which564

we define as the value 1.1?565

B. For what value of vshell,x does the largest of the Einstein multipliers become “large,” which we566

define as the value 10?567

C. Exercise 5 in Chapter 1 analyzes the highest energy cosmic ray so far detected, with an energy568

of 3× 1020 electron volts. Let this cosmic ray be a speeding proton (mass = 1.63× 10−27
569

kilogram = 9.38× 108 electron-volts) that streaks tangentially past Earth just above its570

atmosphere, about 100 kilometers above the surface. Estimate the value of the largest Einstein571

multiplier in this case. Hint: Define vshell,x ≡ 1− δ, then use our approximation formula from572

inside the front cover to redefine the Einstein multipliers in terms of δ.573

D. The proton is a quantum particle; its “radius” is not a classical quantity. Nevertheless, estimate574

the tidal stress on the proton cosmic ray of Part C: Assume this proton radius to be 10−15
575

meter. What are the tidal accelerations at the surface of the “fastest proton” moving576

tangentially above Earth’s atmosphere?577

E. Repeat Part D for the “fastest proton” skimming past the surface of a neutron star with578

r/M = 10 kilometers.579

580

9.8 EXERCISES581

1. Smallest circular orbit for a hardened probe around the black hole582

We harden a probe so that it can withstand K times the maximum583

comfortable tidal acceleration of a human (Section 9.6). The probe enters a584

circular orbit around the black hole of mass M in which the tidal acceleration585

has this maximum. What is the r-value of this circular orbit?586

2. The photon (Star Trek) rocket587

An advanced civilization develops the photon rocket engine, one that588

combines matter and antimatter in a controlled way to yield only photons589
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FIGURE 11 Exercise 2. Diagram showing initial and final states of a photon rocket that
emits only radiation.

(high-energy gamma rays), all of which it directs out the rear of the rocket.590

The photon rocket engine is the most efficient in the sense that it produces the591

greatest possible change of velocity for a given fractional change in mass of the592

rocket ship. Analyze the photon rocket using special relativity, including the593

definition γ ≡ (1− v2)−1/2.594

A. Write down the energy and momentum conservation laws using Figure595

11.596

B. Combine the conservations laws, show that γv =
(
γ2 − 1

)1/2
, and597

derive the equation for the mass ratio:598

minit

mfinal
= γ +

(
γ2 − 1

)1/2
(photon rocket, flat spacetime) (49)

where minit is the initial mass of the rocket ship.599

C. Find the mass ratio for γ = 10600

D. Show that the result of Part C is an example of the approximation601

minit

mfinal
≈ 2γ (when γ2 � 1) (photon rocket, flat spacetime) (50)

3. Newton’s Tangential Tidal Displacement Near Earth.602

Brave Monica Sefner “walks the plank” at the top of the 828-meter-tall Dubai603

Tower, Burj Khalifa (Figure 12), on which she moves horizontally outward to a604

point that clears the base of the tower. Then she steps off the plank attached605

to a bungee cord and falls freely for 600 meters, at which point the cord “takes606

hold” and slows her to a stop before she reaches the ground. As she leaves the607

plank, Monica stretches out her arms and releases from rest two marbles608
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FIGURE 12 Exercise 3. DubaiTower, 828 meters high.

FIGURE 13 Exercise 3. Construction to analyze tangential tidal acceleration of radially
falling marbles in Newton’s mechanics. Not to scale, and with gross differences in relative scale
of different parts of the diagram.

initially 2 meters apart horizontally. Just before the end of her 600-meter free609

fall, how much will the measured separation between these marbles have610

decreased? Will Monica be able to measure this decrease in separation? To611

answer these questions, use the following method of similar triangles (Figure612

13) or your own method.613

Assume that the air neither slows down nor deflects either marble from614

its straight-line course. Then each marble falls from rest toward the615

center of Earth, as indicated by arrows in Figure 13. Solve the problem616

using the ratio of sides of similar triangles abc and a′b′c′. These triangles617
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are upside down with respect to one another, but they are similar618

because their respective sides are parallel. We know the lengths of some619

of these sides (some greatly exaggerated in the figure): Side b′c′ = 600620

meters; side bc is effectively equal to the r-coordinate of Earth; side621

ab = 1 meters equals half of the original separation of the marbles; side622

a′b′ equals half the change in their separation after a drop of 600 meters.623

A. Use the ratio of sides of similar triangles to find the “half change” in624

separation as the two marbles fall 600 meters. From this result, find the625

entire change in separation between the marbles.626

B. Suppose that, as she steps off the plank, Monica releases the two627

marbles from rest with a vertical separation of 2 meters. From628

Newton’s equations (36) and (37), find the increase in separation of two629

marbles after they fall 600 meters, under the assumption that the630

marbles fall in a vacuum.)631

C. Re-derive your result of Part A using the simpler Part B plus equation632

(45).633

4. Measure your global radial coordinate r near a black hole?634

You are the captain of a spaceship with rockets blasting as you descend slowly635

toward a black hole along a radial line. In effect, you stand for a minute on636

each shell, then step downward sequentially to the next shell below. From637

earlier observations you know the value of the black hole mass M and would638

like to measure your map r-coordinate in order to be sure you are not near the639

event horizon.640

A. Describe how you can determine r from the initial acceleration of a test641

particle as you descend.642

B. Oops! Is there a paradox here? You have measured a map quantity, r,643

using observations on a local shell. Isn’t that illegal?644

5. Spaceship approach at relativistic speed645

The present chapter assumes that the approaching spaceship moves646

slowly—not at relativistic speed—with respect to the black hole, so that647

E/m ≈ 1. But the captain of the approaching spaceship does not want to648

waste valuable rocket fuel to slow down in order to apply the analysis of this649

chapter. She decides not to reduce the large value of her map energy E/m650

(with respect to the black hole) and instead to use her main thrusters to651

adjust the value of her map angular momentum L/(mM) so that she moves652

directly to a knife-edge orbit. If the rocket thrust that increase L/m also653

increases E/m, no problem: Just use the final value of E/m in what follows.654
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A. For a large value of map energy E/m� 1, the r-value of the knife-edge655

orbit is only slightly greater than 3M. Set r/M = 3(1 + δ) in (8). Show656

that:657

E

m
≈ 1

3δ1/2
(E/m� 1, knife-edge orbit) (51)

so that for the given large value of E/m,658

δ1/2 ≈ m

3E
(E/m� 1, knife-edge orbit) (52)

B. Show that for this case, equation (6) for the knife-edge orbit becomes:659

L

mM
≈
(

3

δ

)1/2

= 33/2E

m
(E/m� 1, knife-edge orbit) (53)

C. When observations are complete, how does the commander move away660

from the black hole? Give a general description of this maneuver; don’t661

sweat the details.662

6. Swoop Orbit663

Figure 14 shows the effective potential for a so-called swoop orbit of a stone664

whose map energy E/m is slightly smaller than that of the effective potential665

peak at small r-value.666

E*
r/M

E/m

E/m just below peak of effective potential

VL(r) m 

FIGURE 14 Exercise 6: Effective potential for the swoop orbit of a stone with map energy
E/m just below the (left-hand peak) of the effective potential.
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A. Make a rough sketch of the swoop orbit on the [r, φ] slice. Optional: Use667

interactive softward GRorbits to create and print this swoop orbit.668

Luc Longtin is a junior engineer at the Space Agency. He claims that with669

a small rocket thrust he can put the entire incoming spaceship into a swoop670

orbit that oscillates between r = 4M and r = 100M . This will allow direct671

observations from the spaceship at r-values between these two limits,672

completely eliminating the need for probes.673

The Space Agency rejects Luc’s plan as too risky. Luc invites you, the674

Chief Engineer, to a bar where he tries to convince you to that the Space675

Agency should reverse its decision and use his plan. Luc lays out his proposal676

as follows:677

B. Luc begins, “Look at the effective potential for L/(mM) = 4 in Figure678

6. The inner peak of this effective potential is at r = 4M with E/m = 1679

and the spaceship approaches from far away with E/m = 1 + ε, where680

ε = 0.001. My plan is that when the spaceship reaches, say r = 20, it681

uses a tiny rocket thrust to flip its map energy to E/m = 1− ε without682

changing its angular momentum (so the effective potential does not683

change). Let engineers worry about details of that thrust; just look at684

the result. The spaceship enters a swoop orbit that bounces off the685

effective potential peak just outside r = 4M . At that bounce,686

dr/dτ = 0, so equation (17) in Section 8.4 becomes”687

dr

dτ
= 0 =

(
E

m

)2

−
(

1− 2M

r

)(
1 +

L2

m2r2

)
(54)

0 = (1− ε)2 −
(

1− 2M

r

)(
1 +

16M2

r2

)
(55)

0 = 32

(
M

r

)3

− 16

(
M

r

)2

+ 2

(
M

r

)
− [1− (1− ε)2] (56)

Fill in the steps between (55) and (56).688

C. Luc continues, “We set up equation (56) for the bounce point near689

r = 4M . But this equation has only global map quantities in it, so is690

also correct for the bounce point at the large r-value at the outward691

end of the swoop orbit. At this large r-value, the first term on the right692

of (56) is small compared to the other terms, so neglect this first term.693

What remains is a quadratic in the small quantity M/r. Solve this694

quadratic to show that the only acceptable solution for large r/M is695

M/r = ε or r = M/ε = 100M for the right-hand bounce point of the696

swoop orbit.”697

Verify Luc’s calculations.698

C. Luc concludes, “So a very small rocket thrust installs the entire699

incoming spaceship in a swoop orbit that moves in and out between700
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r = 100M and an r-value slightly greater than r = 4M . No need for701

those silly probes. Astronauts can make observations in this orbit as702

long as they want as they move in and out. When they finish, a small703

rocket thrust similar to that described in Item B (during the outgoing704

portion of its orbit) flips the spaceship map energy back to705

E/m = 1 + ε, so the spaceship escapes the black hole.”706

Do you agree with this part of Luc’s plan?707

Will you recommend Luc’s program to the Space Agency?708
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